Spaces with a Locally Countable k-network

Lin Shou (林 寿)

(Department of Mathematics, Ningde Teachers' College, Fujian, 352100)

Abstract In this paper, we consider the spaces with a locally countable k-network. It is shown that a regular k-space with a locally countable k-network is an k-space, and that there exists a completely regular space with a locally countable k-network which is not an k-space. By using the above result, we prove that a regular space is a Fréchet space with a locally countable k-network if and only if it is a pseudo-open (or closed) k-image of a locally separable metrizable space.

Key Words k-network; \square; k-space

A space is a locally separable metrizable space if and only if it is a regular space with a locally countable base (cf. [1]). Thus, one may investigate the further properties of locally separable metrizable spaces by means of the discussion of properties of spaces with a locally countable k-network. From the classical Nagata-Smirnov metrization theorem we know that a regular space with a locally countable base has a σ -locally finite base. So, the following question can be raised:

Question 1 Is a regular space with a locally countable k-network a space with a σ - locally finite k-network?

Since a space with a locally countable k-network is a generalization of a locally separable metrizable space, and since our purpose is to bring out properties of locally separable metrizable spaces by means of that of the space with a locally countable k-network, according to Alexandroff's hypothesis, the following question can be raised:

Question 2 By means of what maps can we establish the relationship between locally separable metrizable spaces and spaces with a locally countable k-network?

In this paper, we prove that a regular k-space with a locally countable k-network (Theorem 1) and that there exists a completely regular space with a locally countable k-network, which has no σ -locally finite k-network (Example 1). Secondly, by means of pseudo-open (or closed) s-maps we establish the relationship between locally separable metrizable spaces and spaces with a locally countable k-network, and prove that a regular space is a Fréchet space with a locally countable k-network if and only if it is a pseudo-open (or closed) s-image of a locally serapable metrizable space (Theorem 2).

In the following, all maps are continuous and surjective, and N denotes the set of positive integers.

Let X be a topological space. A collection \mathscr{S} of subsets of X is called a k-network if for any com-Received Apr. 18, 1987.

pact subsets K of an open set V of X, there exists a finite subcollection \mathscr{D}' of \mathscr{D} such that

$$K \subset \bigcup \mathscr{D}' \subset V$$
.

A regular space is called an \S_0 -space if it has a countable k-network. A regular space is called an \S_0 -space if it has σ -locally finite k-network. A subset V of a space X is said to be sequentially open if every sequence converging to a point of V is eventually in V. A space X is called a sequential space if every sequentially open subset of X is open in X. A space X is called a k-space if for each $A \subset X$, A is closed in X whenever the intersection of A with any compact subspace K of X is closed in K. Every sequential space is a k-space. A space X is called a meta-Lindelöf space if every open cover of X has a point countable open refinement.

Proposition 1 A regular sequential space with a σ -locally countable k-network is a hereditary meta-Lindeiöf space.

Proof A space X is a hereditary meta-Lindelöf space if and only if every open subset of X is a meta-Lindelöf space. Since regularity is hereditary, and since the property that a sequential space X has a σ -locally countable k-network is hereditary to all open subspace of X, to complete the proof of the proposition it suffices to show that a regular sequential space with a σ -locally countable k-network is a meta-Lindelöf space. Suppose X is a regular sequential space with a σ -locally countable k-network. By regularity, we can assume that X has a σ -locally countable closed k-network $\bigcup_{n \in N} \mathscr{P}_n$, where each \mathscr{P}_n is locally countable and $\mathscr{P}_n \subset \mathscr{P}_{n+1}$. We assert that each locally countable collection of subsets of X may be expanded to a point countable collection of open sets of X. In fact, let

$$\mathscr{F} = \{F_a \colon a \in A\}$$

be a locally countable collection of subsets of X. Let

 $\Lambda = \{\lambda: \lambda \text{ is a finite sequence consisting of members of } N\}.$

For each $\lambda \in \Lambda$, a locally countable family

$$\mathscr{F}(\lambda) \Longrightarrow \{F_a(\lambda): a \in A\}$$

is defined inductively as follows:

$$\mathscr{F}(\phi) = \mathscr{F}$$

where $F_a(\phi) = F_a$ for each $a \in A$, and if a locally countable family $\mathcal{F}(\lambda)$ has been defined and $n \in N$, then put

$$\mathscr{D}(\widehat{\lambda n}) = \{ P \in \mathscr{D}_* : P \cap F_a(\lambda) \neq \emptyset \text{ for only countablely many } a \in A \},$$

$$F_a(\hat{\lambda n}) = \bigcup \{P \in \mathscr{P}(\hat{\lambda n}): P \cap F_a(\lambda) \neq \emptyset\},$$

and

$$\mathscr{F}(\hat{\lambda n}) = \{F_a(\hat{\lambda n}) : a \in A\}.$$

For each $x \in X$, since \mathscr{P}_n is locally countable, there exists a neighbourhood V of x and a countable subcollection \mathscr{P}' of \mathscr{P}_n such that $P \cap V = \phi$ when $P \in \mathscr{P}_n - \mathscr{P}'$. Let

$$\mathscr{D}' \cap \mathscr{D}(\widehat{\lambda n}) = \{P_i : i \in N\}.$$

For each $i \in N$, there exists a countable subset A_i of A such that

$$P_i \cap F_a(\lambda) = \phi$$
 when $a \in A - A_i$.

So $\{a \in A: \text{ there exists } i \in N \text{ such that } F_a(\lambda) \cap P_i \neq \emptyset\}$ is countable, i.e.,

$$V \cap F_a(\widehat{\lambda n}) \neq \phi$$

for only countablely many $a \in A$. Therefore, $\mathscr{P}(\widehat{\lambda n})$ is locally countable. Now for each $a \in A$, put $W_a = \bigcup \{F_a(\lambda) : \lambda \in A\}$.

If $\mathscr{W} = \{W_a : a \in A\}$ is not point countable, then there exists $x_0 \in X$ and an uncountable subset A' of A such that $x_0 \in W_a$ for each $a \in A'$. For each $a \in A'$, there exists $\lambda(x_0, a) \in A$ such that $x_0 \in F_a(\lambda(x_0, a))$. Since A' is uncountable, there is an uncountable subset A'' of A' and $\lambda_0 \in A$ with $\lambda(x_0, a) = \lambda_0$ where $a \in A''$, i. e., $x_0 \in F_a(\lambda_0)$. This contradicts that $\mathscr{F}(\lambda_0)$ is point countable. Hence \mathscr{W} is point countable. Obviously, \mathscr{W} is an expansion of \mathscr{F} . To show that each W_a is open, it suffices to show that W_a is sequentially open because X is sequential. Suppose a sequence $Z = \{x_a\}$ converges to $x \in W_a$. Then there exists $\lambda \in A$ with $x \in F_a(\lambda)$. Since $\mathscr{F}(\lambda)$ is locally countable, there exists a neighbourhood V of x such that

$$V \cap F_b(\lambda) \neq \phi$$

for only countablely many $b \in A$. Since $x \in V$, there exists $n \in N$ such that

$$Z_n = \{x\} \cup \{x_m: m \geqslant n\} \subset V.$$

And hence, there exist $m, h \in N$ and $P_i \in \mathcal{P}_m$ ($i \leq h$) such that

$$Z_{\bullet} \subset \bigcup_{i \leqslant \bullet} P_i \subset V$$
.

We can assume that there exists $h_1 \leq h$ with $x \in (\bigcap_{i \leq h_1} P_i) - (\bigcup_{k_1 < i \leq h} P_i)$. Since the P_i 's are closed, $x_n \in \bigcup_{k_1 < i \leq h} P_i$ for only finitely many $n \in N$. Therefore, the sequence Z is eventually in $\bigcup_{i \leq h_1} P_i$. Since $P_i \subset V$ and $x \in P_i \cap F_a(\lambda)$ for each $i \leq h_1$,

$$\bigcup_{i\leq k} P_i \subset F_a(\widehat{\lambda m}) \subset W_a$$

by the definition of $\mathscr{P}(\widehat{\lambda m})$. Hence Z is eventually in W_a , and \mathscr{W} is a point countable open expansion of \mathscr{F} .

Let \mathscr{U} be an open cover of X. Since X has a σ -locally countabel k-network, there exists a locally countable collection $\mathscr{F}_i = \{F_{i,\alpha} \colon \alpha \in A_i\}$ of subsets of X such that $\bigcup_{i \in N} \mathscr{F}_i$ is a refinement of \mathscr{U} . For each $i \in N$, there exists a point countable open expansion

$$\mathscr{W}_i = \{W_{i,a}: a \in A_i\}$$

of \mathscr{F}_i with $F_{i,a} \subset W_{i,a}$. For each $a \in A_i$, we can choose $U_{i,a} \in \mathscr{U}$ with $F_{i,a} \subset U_{i,a}$. Then

$$\bigcup_{i\in N} \{U_{i,a} \cap W_{i,a}: a \in A_i\}$$

is a point countable open refinement of \mathcal{U} . Hence X is a meta-Lindelöf space.

Theorem 1 A regular k-space with a locally countable k-network is a topological sum of \aleph_0 -spaces, and hence it is an \aleph -space.

Proof Suppose a topological space X is a regular k-space with a locally countable k-network. Since X is a local \mathcal{K} -space, X is a locally separable space with point G_{δ} -property (cf. [2], (D)). By Proposition 1, X is a hereditary meta-Lindelöf space because a regular k-space with point G_{δ} -property is sequential (cf. [3], Theorem 7.3). So X is a locally separable and hereditary meta-Lindelöf space and hence it is a topological sum of Lindelöf spaces (cf. [4], Proposition 8.7). Since every locally countable collection of subsets of a Lindelöf space is countable, X is a topological sum of \mathcal{K}_{δ} -spaces.

Therefore, X is an \aleph -space because \aleph_0 -spaces are \aleph -spaces and \aleph -properties are preserved for topological sums.

Example 1 There exists a completely regular space with a locally countable k-network, which is not an \S -space.

Proof Let

$$X = \omega_1 \cup (\omega_1 \times \{1/n: n \in N\}),$$

and define a base \mathcal{B} for the desired topology on X as follows:

- (1) if $x \in X \omega_1$, let $\{x\} \in \mathcal{B}$, and
- (2) if $a \in \omega_i$, then

$$\{\{a\} \bigcup (\bigcup_{n \ge m} V(n,a) \times \{1/n\}): m \in N, V(n,a) \text{ is a neighbourhood of } a \text{ in } \omega_1$$

with the order topology \ $\subset \mathcal{B}$.

Since X has an open and closed base, X is a completely regular space. Put

$$\mathscr{D} = \{\{x\}: x \in X\} \cup \{\{a\} \cup \{(a, 1/n): n \ge m\}: m \in N, a \in \omega_i\}.$$

Then \mathcal{P} is a locally countable collection of subsets of X. If K is a compact subset of X, then

- (a) $K \cap \omega_1$ and $K \cap (\omega_1 \times \{1/n\})$ are finite for each $n \in N$;
- (b) $a \in \omega_1 K$, implies $(a, 1/n) \in K$ for only finitely many $n \in N$;
- (c) $K-\bigcup\{\{a\}\bigcup\{(a, 1/n): n\in N\}: a\in K\bigcap\omega_i\}$ is finite.
- (a) holds because ω_1 and $\omega_1 \times \{1/n\}$ are closed discrete subspaces of X for each $n \in N$.

For each $a \in \omega_1 - K$, suppose that there exists countablely many $n \in N$, say $\{n_i\}$, such that $(a, 1/n_i) \in K$. Since K is compact, $\{(a, 1/n_i) : i \in N\}$ has a cluster point $x \in K$. Then

$$x = a \in \omega_1 - K$$
,

a contradiction. Hence (b) holds.

By the same reason, (c) holds.

It is not difficult to check that \mathscr{P} is a locally countable k-network for X.

To show that X is not an \Re -space, we first prove the following lemma.

Lemma A pseudo-open and compact image of a K-semistratifiable space is a semistratifiable space.

Proof By the definition of a K-semistratifiable space (cf. [5]), a topological space X is a K-semistratifiable space if and only if X has a K-semistratification, i. e., to each closed subset F of X one can assign a sequence $\{G(F, n)\}_{n \in N}$ of open subsets of X such that

- (a) $G(F, n+1) \subset G(F, n)$ for each $n \in N$;
- (b) $F = \bigcap_{E \in \mathcal{F}} G(F, n)$;
- (c) $G(F, n) \subset G(H, n)$ whenever $F \subset H$ and $n \in N$;
- (d) if K is a compact subset of X and $K \cap F = \phi$, there exists $n \in N$ such that

$$K \cap G(F, n) = \phi.$$

Let f be a pseudo-open and compact map from the K-semistratifiable space X onto a topological space Y, to show that Y is a semistratifiable space, it suffices to show that Y has a semistratification (cf. [6]), i.e., to each closed subset F of Y one can assign a sequence $\{S(F, n)\}_{n \in X}$ of open subsets of Y satistying (a)—(c). Let F be a closed subset of Y. Then $f^{-1}(F)$ is closed in X and, put

$$S(F, n) = int(f(G(f^{-1}(F), n))),$$

we will show that the correspondence $F \to \{S(F, n)\}_{n \in N}$ is a semistratification for Y. (a) and (c) are easily shown to be satisfied. Since f is a pseudo-open map, $F \subset S(F, n)$ for each $n \in N$, and hence

$$F \subset \bigcap_{i \in \mathcal{N}} S(F, n).$$

On the order hand, if $y \in Y - F$, then

$$f^{-1}(y) \cap f^{-1}(F) = \phi.$$

Since $f^{-1}(y)$ is a compact subset of X, there exists $m \in N$ such that

$$f^{-1}(y) \cap G(f^{-1}(F), m) = \phi,$$

i.e., $y \in f(G(f^{-1}(F), m))$. But

$$S(F, m) \subset f(G(f^{-1}((F), m)),$$

therefore $y \in \bigcap_{i \in \mathcal{N}} S(F, n)$. Hence

$$F = \bigcap_{i \in \mathcal{N}} S(F, n),$$

(b) holds, and Y is a semistratifiable space. This completes the proof of the Lemma.

Since \Re -spaces are K-semistreatifiable spaces (cf. [7]), to complete the proof of Example 1 it suffices to show X is not a K-semistratifiable spaces. Define $f: X \to \omega_1$ such that

$$f((a, 1/n)) = f(a) = a$$
 for each $a \in \omega_1$.

It is easily shown that f is a pseudo-open and compact map from X onto the space ω_1 with the order topology. But, ω_1 is not subparacompact because every subparacompact, countably compact space is compact. Since every semistratifiable space is a subparacompact space (cf. [6]), ω_1 is not a semistratifiable space. By the above Lemma, X is not a K-semistratifiable space. Hence X is not an K-space. This completes the proof of Example 1.

In the second part of this paper, we will establish the relationship between locally separable metrizable spaces and spaces with a locally countable k-network by means of suitable maps. A map $f: X \rightarrow Y$ is an s-map if for each $y \in Y$, $f^{-1}(y)$ is separable in X. A space X is a Fréchet space if for every $A \subset X$ and every $x \in cl(A)$, there exists a sequence of points of A converging to x. Every first countable space is a Frécher space and every Fréchet space is a k-space.

Theorem 2 The following are equivalent for a regular space X_2

- (1) X is a closed s-image of a locally separable metrizable space.
- (2) X is a pseudo-open s-image of a locally separable metrizable space.
- (3) X is a Fréchet space with a locally countable k-network.

Proof Since every closed map is pseudo-open, $(1)\Rightarrow(2)$ is obvious. Suppose a regular space X is a pseudo-open s-image of a locally separable metrizable space. Since every locally separable metrizable space is a regular, locally separable. Fréchet space with a point countable k-network, X is a topological sum of \aleph_0 -seaces (cf. [4], Proposition 8.8). So X has a locally countable k-network. X is a Fréchet space, because Fréchet property is preserved under pseudo-open maps. Hence $(2)\Rightarrow(3)$. Finally, suppose X is a Fréchet space with a locally countable k-network. Since every Fréchet space is a k-space. X is a topological sum of \aleph_0 -spaces by Theorem 1. Let $X = \bigoplus_{a \in A} X_a$, where each X_a is an \aleph_0 -space. For each $a \in A$, since Fréchet property is hereditary, X_a is a Fréchet \aleph_0 -space. So X_a is a Lasnev space (cf. [7], Corollary 9), i.e., X_a is the image of a metrizable space M_a under a closed

map f_a . Since metrizable space M_a is paracompact, and X_a is Fréchet, there exists a closed subset M'_a of M_a such that $f_a(M'_a) = X_a$ and $f_{a|M'_a}$: $M'_a \rightarrow X_a$ is an irreducible map, i.e., if H_a is a closed subset of M'_a such that $f_{a|M'_a}(H_a) = X_a$, then $H_a = M'_a$ (cf. [8], Theorem 55.12). Without loss of generality, we can assume that f_a is a closed irreducible map. Since X_a is an \mathfrak{R}_0 -space, it is separable. Let A_a be a countable dense subset of X_a . Take a countable subset B_a of M_a with $f_a(B_a) = A_a$. Then

$$f_a(\operatorname{cl}(B_a)) = \operatorname{cl}(f_a(B_a)) = \operatorname{cl}(A_a) = X_a.$$

Since f_a is irreducible, $\operatorname{cl}(B_a) = M_a$. So M_a is a separable metrizable space. Let $M = \bigoplus_{a \in A} M_a$ and define $f: M \to X$ by $f|_{M_a} = f_a$ for each $a \in A$. Then f is a closed map from the locally separable metrizable space M onto X, and for each $x \in A$, there exists $a \in A$ with $f^{-1}(x) \subset M_a$. Hence $f^{-1}(x)$ is a separable subspace of M. Therefore, f is a closed s-map. This completes the proof of the Theorem.

Remark A regular quotient s-image of a locally separable metrizable space need not be a space with a locally countable k-network (cf. [9], Example 4).

Réferences

- [1] Charlesworth, A., A note on Uryshon's metrization theorem, Amer. Math. Monthly., 83(6)(1976), 718-720.
- [2] Michael, E., \squares, J. Math. Mech., 15(6)(1966), 983-1002.
- [3] Michael, E., A quintuple quotient quest, Gen. Top. Appl., 2(1)(1972), 91-138.
- [4] Gruenhage, G., Michael, E. and Tanaka, Y., Spaces determined by point-countable covers, Pacific J. Math., 113(2)(1984), 303-332.
- [5] Lutzer, D. Z., Semimetrizable and stratifiable spaces, Gen. Top. Appl., 1(1)(1971), 43—48.
- [6] Creede, G. D., Concerning semi-stratifiable spaces, Pacific J. Math., 32(1)(1970), 47-54.
- [7] Foged, L., A characterization of closed images of metric spaces, Proc. Amer. Math. Soc., 95(3)(1985), 487—490.
- [8] Kodama, Y. and Nagami, K., Theory of topological spaces, Iwanami, Tokyo, 1974.
- [9] Lin Shou, On a generalization of Michael's theorem, Northeastern Math. J., 4(2)(1988), 162—168.

Edited by Qu Tianzhen