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Spaces with a Locally Countable k-network
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Abstract In this paper, we consider the spaces with a locally countable k-network. It is shown that a regu-
lar k-space with a locally countable &-network is an ¥ -spuce, and that there exists a completely regular space
with a locally countable k-network which is not an W-space. By using the above result, we prove that a reg- '
ular space is a Fréchet space with a locally countable k- network if and only if it is a pseudo—'open (or

closed) s-image of a locally separable metrizable space.
Key Words k-network; ¥ -space;. k-space

A space is a locally separable metrizable space il and anly if it is a regular space with a locally
countable base (cf. [1]. Thus, one may il_wcsligmc the further .propcrties of locally separable
metrizable spaces by means of the discussioil of propertics of spaces :with a locally cbuntable k- net-
work. From the classical Nagata-Smirnov metrization theorem wc'know that a regular space with a lo-
cally countable base has a o-locally finite base. So, the following question can be raised .

Question 1 Is a regular space with a locally countable &-network a space with a o- locally finite
k-network ? .

Since a space with a locally countable k-network is a generalization of a locally separable metriz-
able space, and since our purpose is to bring out properties of locally separable metrizable spaces by
means of that of the space with a locally countable 4-network, according to Alexandroff’s hypothesis,
the following question can be raised '

Question 2 By means of what maps can we establish the relationship between locally separable
metrizable spaces and spaces with a locally countable &-network?

In this paper, we prove that a regular k-space with a locally countable k-network has a o-locally
finite k-network (Theorem 1) and that there exists a completely regular space with a locally countable
k-nefwork, which has no o-locally finite k-network (Example |). Secondly, by means of pseudo-
open (or closed) s-maps we establish the relationship between locally separable metrizable spaces and
spaces with a locally countable k-network, and prove that a regular space is a Fréchet space with a lo-
cally countable k-network if and only if it is a pseudo-open (or closed) s-image of a locally serapable
metrizable space (Theorem 2).

In the following, all maps are continuous and surjectivé, and .\ denotes the set of positive inte-

- gers.
Let X be a topological space. A collection & of subsets of X is called a k-network if for any com-
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pact subsets K of an open set V of X, there exists a finite subcollection &' of &2 such that
KCU @ Cv.

A regular space is called an ¥ o-space if it has a countable k-network. A regular space is called an ¥}-
space if it has o-locally finite k-network. A subset V of a space X is said to be sequentially open if ev-
ery sequence converging to a point of V is eventually in V. A space X is called a sequential space if ev-
ery sequentially open subset of X is open in X. A space X is called a k-space if for each AC X, 4 is
closed in X whenever the intersection of 4 with any compact subspace K of X is closed in K. Every
sequential space is a k-space. A space X is called a meta-Lindelof space if every open cover of X has a
point countable open refinement.

Proposition 1 A regular sequential space with a a-—locaily countable k-network is a hereditary
meta-Lindecidf space.

Proof A space X is a hereditary meta-Lindeldf space if and only if every open subset of X is a
meta-Lindeldf space. Since regularity is hereditary, and since the property that a sequential space X
has a o-locally countable k-network is hereditary to all open subspace of X, to complete the prodf of
the proposition it suffices to show that a regular sequential space with a o-locally countable k-network
is a meta-Lindelof space. Suppose X is a regular sequential space with a o-locally countable k-net-

work. By regularity, we can assume that X has a o-locally countable closed ¥-network | &2,, where
' sCN

each &2, is locally countable and &2, C2,.,. We assert that each locally countable collection of sub-
sets of X may be expanded to a point countable collection of open sets of X. In fact, let
F = {F,: a € A)
be a locally countable collection of subsets of X. Let
A = {A.: Ais a finite sequence consisting of members of N }.
For each A& A, a locally countable family
F () = {F(A): a € A}

is defined inductively as follows.

F(p) = F _
where F,(¢) =F, for each a & A, and if a locally countable family & (A) has been defined and n& N,
then put
P (in) = (P& &2, P[) F,() # ¢ for only countablely many a € A},
F.(Gn) =U (P € £(n): P F.(A) # ¢},
and

A A
F (An) = {Fa(ln): a & A}-

For each z & X, since &2, is locally countable, there exists a neighbourhood V of 2z and a countable

subcollection &' of &2, such that P{|V=¢ when P& X, — ', Let

@' N P(n) = (P i € N).
For each 1 & N, there exists a countable subset 4; of 4 such that
P,(| F.(A) = ¢ when a € A — A..
So {aGA; there exists' & N such that F,(A) ﬂP,--—/:qb} is countable, 1. e. ,
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V () F.(in) # ¢

for only countablely many a& 4. Therefore, S7( ;gz) is locally countable. Now for each a& A, put
We=U {F.(): 4 € 4).

If % ={W,. a€ A} is not point countable, then there exists 2o& X and an uncountable subset A’ of
. A such that z, & W, fc;)r each a€& A'. For each a€& Al ,» there exists A(zo, a) € A such that zo& F,(A(2,,
a)). Since A’ is uncountable, there is an uncountable subset A4” of A’ and )Loé A with A(xe, a) = A
where a € A", i.e. , 2o& F.(A). This contradicts that # (4,) is point countable. Hence <% is point
countable. Obviously, % is an expansion of & . To show that each W, is'open , it suffices to show
that W, is sequentially open because X is sequential. Suppose a sequence Z={z,} converges to z & W,.

Then there exists A& A with & F,(A). Since & () is locally countable, there exists a neighbourhood

V' of x such that
V- Fu(R) # ¢
for only countablely many b& A. Since z& V', there exists n€& N such that
Z. = {z} U {zp: m =0} CV.
And hence, there exist m,h& N and P.& &7, (1< k) such that
Z.CUp, CV.

i<a

We can assume that there exists &, <Ch with 2&€ ( Y P;) —( |J P:.). Since the P/’s are closed, z,
- i<h b <i<h |

& U P for only finitely many n & N. Therefore, the sequence Z is eventually in |J P,. Since P;C
b <i<Ch ik,

V and 2 € P, F,(A) for each i<h,,

U P.C F,(im) C W,

i<k
by the definition of & (i:n). Hence Z is eventually ih W., and 9% is a point countable open expan-
sion of & . '

Let ¢ be an open cover of X. Since X has a o-locally countabel k-network, there exists a local-
ly countable collection & ;= {F,; .. a€ 4;} of subsets of X such that '_EJN.? ; is a refinement of 2. For
each 1& N, there exists a point countable open expansion

&= {(W;.. a € A}
of & with F;,CW;,.. For each a€& A;, we can choose U, ,€ 2/ with F, ,CU;.. Then

U {Ui.a n Wia: @ € Ai}

W& N
is a point countable open refinement ofé@( . Hence X is a meta-Lindel6f space.

Theorem 1 A regular k-space with a locally countable k-network is a topological sum of {J,-
spaces, and hence it is an {X-space.

Proof Suppose a topological space X is a regular k-space with a locally countable k-network.
Since X is a local &;space, X is a locally separable space with point Gsproperty (cf. [2], (D)). By
Proposition 1, X is a hereditary meta-Lindel6f space because a regular k-space with point G,-property
is sequential (cf. [ 3], Theorem 7. 3). So X is'a locally separable and hereditary meta-Lindelof space

and hence it is a topological sum of Lindelof spaces (cf. [ 4], Proposition 8. 7). Since every locally

countable collection of subsets of a Lindeldf space is countable, X is a topological sum of ¥R ¢spaces.
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Therefore, X is an Y{-space because }y¢-spaces are YN -spaces and ¥ -properties are preserved for
topological sums.

Example 1 There exists a completely regular space with a locally countable k-'network , Which is
not an YR -space.

Proof Let

X=w U (o X {I/r; n € N}),

and define a base & for the desired topology on X as follows.

(1) if z€&€ X—w, let {z}E&H, and

(2) if a€ w;, then

{{a} |J ( ‘[;J Vinsa) X {1/n}): m& N, V(n, a) is a neighbourhood of a in w,

with the order topology} C 4.

Since X has an open and closed base, X is a compietely regular space. Put
' D= {{z}:z2€ X} U {{a} U {Ca, 1/R): n=m}: m € N, a € u}.
~ Then D is a locally countable collection of subsets _of X. If K is a compact subset of X, then

(a) Ko and K] (w; X {1/n}) are finite for each n€ .V

(b) a€ w,— K, implies (a, 1/a) € K for only finitely many n& N

(¢c) K— U {{a}U{(a, 1/0): nEN}:. a€& K{ w} is finite.

(a) holds because w; and w; X {1/a} are closed discrete'subspaces of X for each n& V.

For each a& w,— K, suppose that there exists countablely many n€ N, say {a;}, such that (a,
1/2) € K. Since K is compact, {(a, 1/n;): +& N} has a cluster point z& K. Then

r=a€ v, — K,

a contradiction. Hence (b) holds.

By the same reason, (c) holds.

It is not difficult to check that & is a locally countable k-network for X.

To show that X is not an ¥ -space, we first prove the following lemma.

Lemma A pseudo-open and compact image of a K-semistratifiable space is a semistratifiable
space,

Proof By the definition of a A Jsemistratifiablé space (cf. [5]), a topological space X is a K-

semistratifiable space if and only if X has a K -semistratification, i. e. , to each closed subset F of X
one can assign a sequence {G(F, n) }.e~ of open subsets of X such that '

) G(F, n+1)CG(F, n) for each nE N;

(b) F= [ CG(F, n); '

sa& N

(c) G(F, ) CG(H, n) whenever FCH and € N;
(d) if K is a compact subset of X and AK{}F=¢, there exists & N such that
K () G(F, n) = ¢.

Let f be a pseudo-open and compact map from the A-semistratifiable space X onto a topological
space Y, to show that Y is a semistratifiable space, it suffices to show that ¥ has a semistratification
(cf. [6]), i.e. , to each closed subset F of Y one can assign a sequence {S(F, n) Y« ¥ Of Open subsets
of Y satistying (a)—(c). Let F be a closed subset of Y. Then f~'(F) is closed in X and, put
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S(F, n) = int(f(G(f"'(F) s B))),
we will show that the correspondence F— {S(F, n) }.cv is a scmistratification for Y. (a) and (c) are

easily shown to be satisfied. Since f is a pseudo-open map, FCS(F., n) for each n€& .V, and hence
FCS(F, n).

sEC YV

On the order hand, if y& Y —F, then
ST N ST(F) = ¢
Since f7'(y) is a compact subset of X, there exists m& .\ such that
7'y NG Y(F), m) = ¢,
i.e., y&f(G(f™'"(F), m)). But '
S(F, m) C f(G(ST'((F), m)),

therefore y& () S(F, n). Hence
aC Y

F=S(F.na),

| s V
(b) holds, and Y is a semistratifiable space. This completes the proof of the Lemma.

Since Y} -spaces are KA -semistreatifiable spaces (cf. [7]), to complete the proof of Example 1 it

suffices to show X is not a A -semistratifiable spaces. Defil;e [+ X—w, such that

f{(a, 1/0)) = f(a) =a for eaéhae Wy .
It is easily shown that f is a pseudo-open and compact map from X onto the space w; with the order
topology. But, w, is not subparacompact because every subparacompact, countably compact space is
compact. Since every semistratifiable space is a subparacompact space (c¢f. [6]), w, is not a semis-
tratifiable space. By the above Lemma; X is not a R-semistratifiable space. Hence X is not-an -
space. This completes the proof of Example .

In the second part of this paper, we will establish the relationship between locally separable
metrizable spaces and spaces with a locally countable £-network by means of suitable maps. A map f.
X—Y is an s-map if for each y€ Y., f7'(y) is separable in X. A space X is a Fréchet space if for ev-
ery AC X and every z& cl( A)., there exists a sequence of points of A converging to z. Every first
countable space is a Frécher space and every Fréchet space is a k-space.

Theorem 2 The following are equivalent for a regular space X .

(1) X is a closed s-image of a locally separable metrizable space.

(2) X is a pseudo-open s-image of a locally separable metrizable space.

(3) X is a Fréchet space with a locally countable k-network.

Proof Since every closed map is pseudo-open, (1)=(2) is obvious. Suppose a regular space X
IS a pseudo-open s-image of a locally separable metrizable space. Since every locally scparable metriz-
able space is a regular, locally séparable. Frechet space with a point countable &-network, X is a topo-
logical sum of ¥Ro-seaces (cf. [ 1], Proposition 8. 8). So X has a locally countable k-network. X is a
Fréchet space, because Fréchet property is preserved under pseudo-open maps. Hence (2)=>(3). Fi-
nally , suppose X is a Frechet space with a locally countable k-netwaork. Since every Fréchet space is a

k-space. X is a topological sum of ¥R,-spaces by Theorem 1. Let X= ) X,, where each X, is an ¥,-
aC A

spacc. For each a& A, since Fréchet property is hereditary, X, is a Fréchet ¥Ro-space. So X, is a

Lasnev space (cf. [7], Corolgary 9), i.e. . X.is the image of a metrizable space M, under a closed
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map f.. Since metrizable space M, is paracompact, and X, is Fréchet, there exists a closed subset M,
of M, such that f.(M,) =X, and f.&': M.~ X, is an irreducible map, i.e. , if H, is a closed subset of
M, such that f.»' (H,) =X,, then H,=M, (cf. 8], Theorem 55. 12). Without loss of generality,
we can assume that f, is a closed irreducible map. Since X, is an ¥{¢-space, it is separable. Let A, be

a countable dense subset of X,. Take a countable subset B, of M, with f.(B,) =A.. Then

[o(cl(By)) = cl(fu(B))) = cl(4) = X..
Since f, is irreducible, cl(B,) = M,. So M, is a separable metrizable space. Let M =P M, and define

ac A
f: M—>X by [| u = Jf, for each a& A. Then f is a closed map from the locally separable metrizable

space M onto X, and for each & A, there exists a & A with f""‘(:c)CMn. Hence f~!'(z) is a separable
subspace of M. Therefore, f is a closed s-map. This completes the proof of the Theorem.
Remark A regular quotient s-image of a locally separable metrizable space need not be a space

with a locally countable k-network (cf. [ 9], Example 4).
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