ON SPACES WITH A $\sigma - CF^*$ PSEUDO-BASE

TAKEMI MIZOKAMI AND SHOU LIN

Received September 21, 1995; revised December 18, 1995

ABSTRACT. We propse the conjecture that a space has a $\sigma - CF^*$ pseudo-base if and only if X is either an \aleph_0 -space or has the property that all compact subsets are finite, and give an almost positive answer to it.

1. Introduction. All spaces are assumed to be regular T_2 -spaces. The letter N always denotes the set of natural numbers. For a space X, let $\mathcal{K}(X)$ be a family of all non-empty compact subsets of X and let $\tau(X)$ be the topology of X.

A family \mathcal{P} of subsets of X is called a pseudo-base (briefly p.b.) for X if for each pair K, U of $K \in \mathcal{K}(X)$ and $U \in \tau(X)$ with $K \subset U$ there exists $P \in \mathcal{P}$ such that $K \subset P \subset U$. A space X is called an \aleph_0 -space if it has a countable p.b. [4]. The second author established the following characterization of a space having a σ -HCP (hereditarily closure-preserving) p.b.: A space has a σ -HCP p.b. if and only if either X is an \aleph_0 -space or $X = \bigcup \{X_i : i \in N\}$, where each X_i is a closed discrete subset, and X has the property ACF (=All compact subsets are finite). On the other hand, the first author generalized both compact-finite and HCP families to CF, CF^* families such as: A family $\mathcal U$ of subsets of a space X is called CF in X if $\mathcal U|K$ (the family of the intersections of members of $\mathcal U$ with K) = $\{U_1, \cdots, U_k\}$ is finite for each $K \in \mathcal K(X)$, and called CF^* in X if additionally the following is satisfied: If $|U_i| \geq \aleph_0$, then $\{U \in \mathcal U : U \cap K = U_i\}$ is finite [5, Definition 3.1 and 3.6]. Taking the implication

$$HCP \to CF^* \to CF$$

into account, it is natural to propose the following conjecture:

(A) A space X has a σ - CF^* p.b. if and only if either X is an \aleph_0 -space or X has the property ACF.

We note that since an \aleph_0 -space or a space with the property ACF has a σ - CF^* p.b., this conjecture is essentially the truth of the only if part. Our object here is to give an almost positive answer.

2. Spaces with a σ - CF^* p.b.. Before the discussion, let us note that any space is the quotient space of a space with a σ - CF^* p.b.. In fact, any space is the quotient space of a space with the property ACF [7]. A space is called *perfect* if each closed subset is a G_{δ} -set. The next gives an almost positive answer to (A).

Theorem 1. A space X has a σ -CF* p.b. consisting of perfect subsets of X if and only if either X is an \aleph_0 -space or X has the property ACF.

Key words and phrases. pseudo-base, CF^* family, Fréchet space, k-space.

Proof. If part is trivial. Only if part: Assume the negation of ACF, i.e., that there exists an infinite compact subset K of X. Let \mathcal{P} be a σ - CF^* p.b. consisting of perfect subsets of X. Let

$$\mathcal{P}(K) = \{ P \in \mathcal{P} : K \subset P \}.$$

Then $\mathcal{P}(K)$ is countable. We make the following additional assumption, under which we show that X is an \aleph_0 -space.

Case (a): There exists another infinite compact subset L of X such that $K \cap L = \phi$. Obviously

$$\mathcal{P}(L) = \{ P \in \mathcal{P} : L \subset P \}$$

is countable. Then it follows that $\mathcal{P}(K) \wedge \mathcal{P}(L)$ forms a countable p.b. for X. Indeed, let $C \subset U$ with $C \in \mathcal{K}(X)$ and $U \in \tau(X)$. Take disjoint $U_1, U_2 \in \tau(X)$ such that $K \subset U_1$ and $L \subset U_2$. Then there exist $P_1 \in \mathcal{P}(K)$ and $P_2 \in \mathcal{P}(L)$ such that

$$K \cup C \subset P_1 \subset U_1 \cup U$$
 and $L \cup C \subset P_2 \subset U_2 \cup U$,

which implies $C \subset P_1 \cap P_2 \subset U$.

Case (b): Let K be a G_{δ} -set of X. Note that K is metrizable because K has a G_{δ} -diagonal. Then easily we can choose a countably family W of open subsets of X closed under finite intersections satisfying the following: If K' is a compact subset of K, then we have $K' = \cap \{\overline{W} : W \in \mathcal{W}(K')\}$, where

$$\mathcal{W}(K') = \{W \in \mathcal{W} : K' \subset W\}.$$

In this case, we show that

$$Q = \{D \setminus W : D \in \mathcal{P}(K), W \in \mathcal{W}\} \cup \mathcal{P}(K)$$

forms a p.b. for X. Let $C \subset U$ with $C \in \mathcal{K}(X)$ and $U \in \tau(X)$. If $K \subset U$, then obviously $K \cup C \subset P \subset U$ for some $P \in \mathcal{P}(K)$. If $K' = K \setminus U \neq \phi$, then by the property of W above, there exists $W \in \mathcal{W}(K')$ such that $K' \subset W \subset X \setminus C$. Take $P \in \mathcal{P}(K)$ such that

$$K \cup C \subset P \subset U \cup W$$

Then easily we have $C \subset P \setminus W \subset U$.

Assume the negation of both (a) and (b), under which we show a contradiction. Let $\mathcal{P}^*(K)$ be the totality of finite intersections of members of $\mathcal{P}(K)$. Let $x \notin K$ be fixed for a while. Take disjoint open subsets U(x), V(x) of X such that $x \in U(x)$ and $K \subset V(x)$. We settle the following claim:

Claim: There exists $P(x) \in \mathcal{P}^*(K)$ such that

$$\{x\} \cup K \subset P(x) \subset U(x) \cup V(x)$$

and

$$U(x)\cap P(x)=\{x\}.$$

The proof of claim: Otherwise, it follows that $U(x) \cap P(x)$ is infinite for each $P \in \mathcal{P}^*(K)$ such that

$$\{x\} \cup K \subset P \subset U(x) \cup V(x).$$

Choose $\{P_n:n\in N\}\subset \mathcal{P}(K)$ such that

$$\{x\} \cup K \subset P_{n+1} \subset P_n \subset U(x) \cup V(x)$$

for each n and such that if $\{x\} \cup K \subset U \in \tau(X)$, then $\{x\} \cup K \subset P_n \subset U$ for some n. Since $U(x) \cap P_n$ is infinite for each n, we can choose a sequence $\{x_n : n \in N\}$ of points such that

$$x_n \in (P_n \setminus \{x\}) \cap U(x) \setminus \{x_1, \cdots, x_{n-1}\}$$

for each n. This implies

$$L = \{x_n : n \in N\} \cup \{x\} \in \mathcal{K}(X)$$

and $L \cap K = \phi$, which implies (a). Thus the claim is settled. By the nagation of (b), $X \setminus K$ is uncountable. Since $\mathcal{P}^*(K)$ is countable, there exists $P_0 \in \mathcal{P}^*(K)$ such that

$$(*) D = \{x \in X \setminus K : P(x) = P_0\}$$

is an uncountable discrete subset of P_0 . By the perfectness of P_0 , there exists an uncountable closed discrete subset D_0 of P_0 . Since \mathcal{P} is a p.b. for X, for each $F \in \mathcal{F}(D_0)$ (= the totality of non-empty finite subsets of D_0) we can take $P(F) \in \mathcal{P}^*(K)$ such that $K \cup F \subset P(F)$ and $P(F) \cap D_0 = F$. But this is a contradiction because $\{P(F) : F \in \mathcal{F}(D_0)\}$ is uncountable. This completes the proof.

According to Sakai's example [7], a space with a σ -CF* p.b. need not be perfect. In fact, there he constructed a space X with the property ACF but X is not countably metacompact. A space X is called \aleph_1 -compact if every closed discrete subspace of X is countable [2], and X is called σ -discrete, σ -closed discrete if $X = \bigcup \{X_n : n \in N\}$ where each X_n is discrete, closed discrete in X, respectively.

Corollary 1. If a space X has a σ -CF* p.b., then one of the following three cases holds:

- (1) X is an \aleph_0 -space.
- (2) X has the property ACF.
- (3) X is an \aleph_1 -compact, σ -discrete space.

Proof. We show that under the negation of both (1) and (2), (3) is true. We repeat the same discussion as above. By virtue of the claim, for each $x \notin K$ there exist $P(x) \in \mathcal{P}^*(K)$ and an open neighborhood U(x) of x in X such that

$$K \cup \{x\} \subset P(x) \text{ and } U(x) \cap P(x) = \{x\}.$$

For each $P \in \mathcal{P}^*(K)$, set

$$D(P) = \{x \in X \setminus K : P(x) = P\}.$$

Then each D(P) is a discrete subset of X. We note that in the previous proof we can assume that K is a convergent sequence with its limit point. Hence we have

$$X = \cup \{D(P) : P \in \mathcal{P}^*(K)\} \cup K$$

is the union of countably many discrete subsets of X. If X is not \aleph_1 -compact, then there exists an uncountable closed discrete subset D of X. By the repetition of the last part below (*) in the proof of Theorem 1, we have a contradiction. Hence X is \aleph_1 -compact.

Corollary 2. Our conjecture (A) is true if the following conjecture (B) is true: (B) Let $X = K \cup D$, where K is an infinite compact subset and D is an uncountable discrete subset of X such that $K \cap D = \phi$ and let X be \aleph_1 -compact. Then X has no σ - CF^* p.b..

Proof. Assume the validity of (B) and X has a σ - CF^* p.b.. Then by the proof of Theorem 1, one of the following three cases holds: (1) X is an \aleph_1 -space, (2) X has the property ACF and (3) there exists an uncountable discrete subset D and an infinite compact subset K of X such that $K \cap D = \phi$. By the same way as the proof of Corollary 1, we can show that the subspace $K \cup D$ is an \aleph_1 -compact space. Since σ - CF^* p.b.s are hereditary to any subspace of $X, K \cup D$ has a σ - CF^* p.b.. But this is a contradiction to (B). Hence either (1) or (2) holds, implying the validity of (A).

Theorem 2. If a space X has a σ -CF* p.b., then X is Lindelöf or X has the property ACF.

Proof. Let \mathcal{P} be a σ - CF^* p.b. for X. Assume that X has an infinite compact subset of K. It suffices to show that X is Lindelöf. Let \mathcal{U} be an open cover of X. For each $x \in X$, there exist $P(x) \in \mathcal{P}$ and a finite subfamily $\mathcal{U}(x)$ of \mathcal{U} such that

$$\{x\} \cup K \subset P(x) \subset \cup \mathcal{U}(x).$$

Note that $\mathcal{P}_0 = \{P(x) : x \in X\}$ is countable. For each $P \in \mathcal{P}_0$, let

$$X(P) = \{x \in X : P(x) = P\}$$

and take a finite subfamily $\mathcal{U}(P)$ of \mathcal{U} such that $X(P) \subset \cup \mathcal{U}(P)$. Then $\cup \{\mathcal{U}(P) : P \in \mathcal{P}_0\}$ is a countable subcover of \mathcal{U} , proving that X is Lindelöf.

A space X is called a k-space if $F \subset X$ is closed if and only if $F \cap K$ is closed in K for each $K \in \mathcal{K}(X)$. In the class of k-spaces, conjecture (A) is true. More strictly, we have the following characterization:

Theorem 3. Let X be a k-space. Then X has a σ -CF* p.b. if and only if X is either an \aleph_0 -space or a discrete space.

Proof. If part is trivial. Only if part: Assume that X is not a discrete space. Then there exists an infinite compact subset because of k-ness of X. By virtue of Theorem 2, X is Lindelöf, hence \aleph_1 -compact. On the other hand, it is easily seen that a CF^* family in a k-space is WHCP in it in the sense of [2]. Therefore X has a σ -WHCP p.b. By virtue of [2, Lemma 1] X is an \aleph_0 -space.

A space X is called a Frécet space if whenever $x \in \overline{A}$ there exists a sequence in A converging to x. A Fréchet space is a k-space. Under Fréchet spaces, we have a more stronger characterization of spaces with a σ - CF^* p.b.. For that matter, we prepare the characterization of Fréchet \aleph_0 -spaces.

Lemma. For a space X, TFAE:

- (1) X is a Fréchet \aleph_0 -space.
- (2) X is a closed image of a subspace M of a Cantor set.
- (3) X is a closed image of a separable metric space.

Proof. (2) \rightarrow (3) \rightarrow (1) is trivial. We show (1) \rightarrow (2). Let $\mathcal{P} = \{P(n) : n \in N\}$ be p.b. for X such that each P(n) is closed in N. Without loss of generality we can assume that \mathcal{P} is closed under finite unions. For each n, let

$$\Delta(n) = \{P(n), X \setminus P(n)\}\$$

be a discrete space. Define a subspace M of $\Pi\{\Delta(n):n\in N\}$ and a mapping $f:M\to X$ as follows:

$$M = \{\langle Q(n) \rangle \in \Pi \Delta(n) : \{\overline{Q(n)} \text{ is a local}$$

network at some point of $X\},$
 $f(\langle Q(n) \rangle) = \cap \overline{Q(n)}$ for each $\langle Q(n) \rangle \in M.$

For the latter use, we notice here the following claim the proof of which is the same as in Foged's one [1, Lemma 4].

Claim: let $x \in U \in \tau(X)$ and Z be a convergent sequence of points of U such that $Z \to x$. Then there exists $P(n) \in \mathcal{P}$ such that $P(n) \subset U$ and Z is eventually in Int P(n).

With the aid of the claim, we show that f has the required properties. To see that f is onto, let $x \in X$. If x is isolated, then it is easy to find $\langle Q(n) \rangle \in M$ with $f(\langle Q(n) \rangle) = x$. Let x be not isolated. By Fréchetness of X, there exists a sequence Z of points of $X \setminus \{x\}$ with $Z \to x$. For each n, we choose $Q(n) \in \Delta(n)$ such that $\overline{Q(n)} \cap Z$ is infinite. To see that $\{\overline{Q(n)}\}$ is a local network at x in X, let $x \in U \in \tau(X)$. By the claim above, there exists $n \in N$ such that $P(n) \subset U$ and Z is eventually in IntP(n). This implies Q(n) = P(n) and $x \in \overline{Q(n)} \subset U$. Hence we have $f(\langle Q(n) \rangle) = x$. The continuity of f follows easily from the definition of f. Finally, we show that f is closed. Let f be a closed subset of f and suppose f in f in f in f in f and f is exist two sequences f and f in f and f in f in

$$f(\langle Q_n(k)\rangle)=P_n\to p \text{ as } n\to\infty.$$

By induction we choose $\langle Q(n)\rangle \in M$ as follows: Choose $Q(1) \in \Delta(1)$ such that $N_1 = \{n \in N : Q_n(1) = Q(1)\}$ is infinite. Then we notice that $\overline{Q(1)}$ contains $\{p_n : n \in N_1\}$. By the same way we choose $Q(1) \in \Delta(2)$ such that $N_2 = \{i \in N_1 : Q_n(2) = Q(2)\}$ is infinite. We continue this process. By the same argument as above, we have $\langle Q(n)\rangle \in M$ and $f(\langle Q(n)\rangle) = p$. Since $\langle Q(n)\rangle \in \{\overline{\langle Q_n(k)\rangle : n \in N}\}$, $\langle Q(n)\rangle \in \overline{A} \subset A$, which implies $p \in f(A)$. But this is a contradiction.

Theorem 4. For a space X, TFAE:

- (1) X is a Fréchet space with a σ -CF* p.b..
- (2) X is a Fréchet space with a σ -HCP p.b..
- (3) X is either a discrete space or a closed image of a subspace of a Cantor set.
- (4) X is either a discrete space or a closed image of a separable metric space.

Proof. (1) \leftrightarrows (2) follows from [5, Proposition 3.8]. (1) \rightarrow (3) \rightarrow (4) \rightarrow (1) follows from the previous lemma and Theorem 3.

3. The hyperspaces and σ - CF^* p.b.s. For a space X, let $\mathcal{K}(X)$ be topologized with the finite topology. That is, $\mathcal{K}(X)$ has a base consisting of all subsets of the following form:

$$\langle U_1, \dots, U_k \rangle = \{ K \in \mathcal{K}(X) : K \subset \cup \{ U_i : 1 \le i \le k \}$$

and $K \cap U_i \ne \phi$ for each i ,

where $\{U_i, \dots, U_k\}$ is a finite family of open subsets of X. It is known that regular T_2 -spaces are inherited to $\mathcal{K}(X)$ [3] and also that \aleph_0 -spaces are so [4]. This is used in the next theorem.

Theorem 5. Let X be a space. Then

- (1) X has a σ -HCP p.b. if and only if so does $\mathcal{K}(X)$.
- (2) X has a σ -CF* p.b. consisting of perfect subsets of X if and only if so does $\mathcal{K}(X)$.

Proof. If parts of both (1) and (2) are easily seen because X is homeomorphic to the closed subspace of $\mathcal{K}(X)$. Only if part of (1): Let X have a σ -HCP p.b.. Then by the characterization due to Lin stated in the introduction, X is either an \aleph_0 -space or a σ -closed discrete space with the property ACF. If X is an \aleph_0 -space, then so is $\mathcal{K}(X)$ [4]. Suppose that X has the property ACF. Let \mathcal{C} be a non-empty compact subset of $\mathcal{K}(X)$. Then by [6, Theorem 0.2], $\cup \mathcal{C}$ is compact in X. By ACF, $\cup \mathcal{C}$ is finite; consequently \mathcal{C} is finite. This implies that $\mathcal{K}(X)$ has ACF. Under ACF, $\mathcal{K}(X)$ coincides with the set of non-empty finite subsets of X. Therefore if X is a σ -closed discrete space, then so is $\mathcal{K}(X)$. Using Theorem 1, the case of (2) is similar to (1).

For the case of σ - CF^* p.b.s., we do not know whether the following (C) is true or not: (C) A space X has a σ - CF^* p.b. if and only if so does $\mathcal{K}(X)$. But we can show the equivalence of (A), (B) and (C).

Proposition. Conjectures (A), (B) and (C) are equivalent:

Proof. (B) \to (A) is due to Corollary 2. (A) \to (C) is shown in the proof of Theorem 5. (C) \to (B): Let $X = K \cup D$ be the same as in (B). Assume that X has a σ - CF^* p.b.. By (C), $\mathcal{K}(X)$ has a σ - CF^* p.b.. For each pair x, y of distinct points of D, let

$$C = \{\{x, p\} : p \in K\} \text{ and } C' = \{\{y, p\} : p \in K\}.$$

Then C and C' are disjoint, infinite compact subsets of K(X). Then by the argument of the case (a) in the proof of Theorem 1, K(X) is an \aleph_0 -space. Consequently X is an \aleph_0 -space. But D is an uncountable discrete subset of X. So this is a contradiction. Hence we establish the equivalence of (A), (B) and (C).

With respect to the conjecture (C), if we weaken the condition CF^* families to CF families, then we have the following positive result:

Theorem 6. A space X has a σ -CF p.b. if and only if so does K(X).

Proof. If part is trivial. Only if part: Let $\mathcal{P} = \bigcup \{\mathcal{P}(n) : n \in N\}$ be a p.b. for X, where for each $n \mathcal{P}(n) \subset \mathcal{P}(n+1)$ and $\mathcal{P}(n)$ is CF in X. For each n let

$$\langle \mathcal{P}(n) \rangle = \{ \langle P_1, \cdots, P_k \rangle : P_1, \cdots, P_k \in \mathcal{P}(n) \text{ and } k \in N \},$$

where

$$\langle P_1, \dots, P_k \rangle = \{K \in \mathcal{K}(X) : K \subset \cup \{P_i : 1 \le i \le k\}$$

and $K \cap P_i \neq \phi$ for each $i\}$.

First we show that for each $n(\mathcal{P}(n))$ is CF in $\mathcal{K}(X)$. Let \mathcal{C} be a non-empty compact subset of $\mathcal{K}(X)$. Then by [6, Theorem 0.2], $C = \cup \mathcal{C}$ is compact in X. Since $\mathcal{P}(n)$ is CF in X, we have

$$\mathcal{P}(n)|C = \{Q(1), \cdots, Q(k)\}.$$

Let $\{Q(\delta(i)): i=1,\cdots,t\}$ be the totality of finite subfamilies of $\{Q(1),\cdots,Q(k)\}$ such that for each i

$$\langle \mathcal{Q}(\delta(i)) \rangle = \{ K \in \mathcal{K}(X) : K \subset \cup \mathcal{Q}(\delta(i)) \}$$

and $K \cap Q \neq \phi$ for each $Q \in \mathcal{Q}(\delta(i)) \}$

intersects C. Let $\langle P_1, \dots, P_m \rangle \cap C \neq \phi$, where $\{P_1, \dots, P_m\} \subset \mathcal{P}(n)$. Then all P_i intersect C. So, there exists $\delta(i)$ with $1 \leq i \leq t$ such that

$${P_1,\cdots,P_m}|C=\mathcal{Q}(\delta(i)).$$

Then we have

$$\langle P_1, \cdots, P_m \rangle \cap \mathcal{C} = \langle \mathcal{Q}(\delta(i)) \rangle \cap \mathcal{C}.$$

Hence $\langle \mathcal{P}(n) \rangle$ is CF in $\mathcal{K}(X)$.

Let $\hat{\mathcal{P}}$ be the totality of finite unions of members of $\cup \{\langle \mathcal{P}(n) \rangle : n \in N\}$. Then $\hat{\mathcal{P}}$ is easily seen to be a σ -CF family in $\mathcal{K}(X)$. We show that $\hat{\mathcal{P}}$ is a p.b. in $\mathcal{K}(X)$. Let $\mathcal{K} \subset \hat{U}$, where \mathcal{K} is a compact subset of $\mathcal{K}(X)$ and \hat{U} is an open subset of $\mathcal{K}(X)$. Then we show that there exists $\hat{P} \in \hat{\mathcal{P}}$ such that $\mathcal{K} \subset \hat{P} \subset \hat{U}$. We consider the following two cases:

Case 1: Let \hat{U} be a basic open subset of $\mathcal{K}(X)$, i.e.,

$$\hat{U} = \langle U_1, \cdots, U_k \rangle, U_1, \cdots, U_k \in \tau(X).$$

Since K is compact and K(X) is regular, there exists a finite open cover $\{\hat{V}(1), \dots, \hat{V}(n)\}$ of K such that

$$\mathcal{K} \subset bigcup_i \hat{V}(i) \subset \bigcup_i Cl(\hat{V}(i)) \subset \hat{U},$$

where each $\hat{V}(i)$ is a basic open subset of $\mathcal{K}(X)$. Let $1 \leq i \leq n$ be fixed for a while and let

$$\hat{V}(i) = \langle V_1, \cdots, V_s \rangle, V_1, \cdots, V_s \in \tau(X).$$

For the latter use, we notice the following two facts:

$$Cl(\hat{V}(i)) = \langle \bar{V}_1, \cdots, \bar{V}_s \rangle$$

$$= \{ K \in \mathcal{K}(X) : K \subset \bigcup_i \bar{V}_i \text{ and} \}$$

$$(1)$$

$$K \cap \bar{V}_i \neq \phi \text{ for each } i \} ([3, \text{Lemma 2.3.2}]).$$

(2)
$$Cl(\hat{V}(i)) \subset \hat{U} \rightleftarrows \bigcup_{j=1}^{s} \bar{V}_{j} \subset \bigcup_{i=1}^{k} U_{i}$$

and for each i with $1 \le i \le k$ there exists j(i) with $1 \le j(i) \le s$ such that $\bar{V}_{j(i)} \subset U_i$ ([3, Lemma 2.3.1]).

Let

$$N_0 = \{j(i): i = 1, \dots, k\}, N_1 = \{1, \dots, s\} \setminus N_0.$$

By virtue of [6, Theorem 0.2]

$$K(i) = \cup \{K : K \in \mathcal{K} \cap Cl(\hat{V}(i))\}$$

is compact in X and it is easily seen that

$$K(i) \in \langle \bar{V}_1, \cdots, \bar{V}_s \rangle \subset \langle U_1, \cdots, U_k \rangle$$
.

For each $j \in N_0$, choose $P_j \in \mathcal{P}$ such that

$$K(i) \cap \bar{V}_j \subset P_j \subset \cap \{U_i : j(i) = j\}.$$

For each $j \in N_1$, choose $P_j \in \mathcal{P}$ such that

$$K(i) \cap \bar{V}_j \subset P_j \subset \bigcup_{i=1}^k U_i.$$

Easily we have

$$\mathcal{K} \cap Cl(\hat{V}(i)) \subset \langle P_1, \cdots, P_s \rangle \subset \hat{U}$$

and

$$\langle P_1, \cdots, P_s \rangle \in \langle \mathcal{P}(t(i)) \rangle$$

for some $t(i) \in N$. Running i from 1 to n, we have

$$\mathcal{K} \subset \hat{P} \subset \hat{U}$$

for some $\hat{P} \in \hat{P}$.

Case 2: Let \hat{U} be an open subset of $\mathcal{K}(X)$. From the definition of the base for the topology of $\mathcal{K}(X)$, there exists a finite cover $\{\hat{U}(i):i\in i,\cdots,h\}$ of \mathcal{K} consisting of basic open subsets of $\mathcal{K}(X)$ such that $\mathcal{K}\subset\bigcup_i\hat{U}(i)\subset\hat{U}$. Since \mathcal{K} is compact, there exists a closed cover $\{\mathcal{K}(i):i=1,\cdots,h\}$ of \mathcal{K} such that $\mathcal{K}(i)\subset\hat{U}(i)$ for each i. By virtue of the case 1, for each i we can find $\hat{P}(i)\in\hat{\mathcal{P}}$ such that $\mathcal{K}(i)\subset\hat{\mathcal{P}}(i)\subset\hat{U}(i)$.

Hence we have $\mathcal{K} \subset \bigcup_i \hat{\mathcal{P}}(i) \subset \hat{U}$ and $\hat{P} = \bigcup_i \hat{P}(i) \in \hat{\mathcal{P}}$, because $\hat{\mathcal{P}}$ is closed under finite unions. This completes the proof.

REFERENCES

- 1. L. Foged, A characterization of closed images of metric spaces, Proc. Amer. Math. Soc., 95 (1985), 487-490.
- 2. S. Lin, A study of pseudobases, Q & A in Gen. Top., 6 (1988), 81-97.
- 3. E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc., 71 (1951), 152-182.
- 4. E. Michael, No-spaces, J. Math. Mech., 15 (1966), 983-1002.
- 5. T. Mizokami, On CF families and hyperspaces of compact subsets, Top. Appl., 35 (1990), 75-92.
- 6. I. Ntantu, Cardinal functions on hyperspaces and function spaces, Top. Proc., 10 (1985), 357-375.
- 7. M. Sakai, Remarks on spaces with special type of k-networks, preprint.

DEPARTMENT OF MATHEMATICS, JOETSU UNIVERSITY OF EDUCATION, JOETSU, NIIGATA 943, JAPAN

NINGDE TEACHER'S COLLEGE, NINGDE FUJIAN, P. R. CHINA