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ABSTRACT. We propse the conJecture that a space has a ¢ — CF* pseudo-ba.se if and only if
X is either an Rg-space or has the property that all compact subsets are finite, and give an
almost positive answer to it.

1. Introduction. All spaces are assumed to be regular T5>-spaces. The letter N always
denotes the set’ of natural numbers. For a space X, let }C(X ) be a family of all non-empty
compact subsets of X and let 7(X) be the topology of X. |

A family P of subsets of X is called a pseudo-base (briefly p.b.) for X if for each pair
K,Uof K € K(X)and U € 7(X) with K C U thereexists P€ Psuchthat K CPCU. A
space X is called an No-space if it has'a countable p.b. [4]. The second author established
the following characterization of a space having a o-HCP (hereditarily closure-preserving)
p.b.: A space has a o-HCP p.b. if and only if either X is an Rp-space or' X = UW{X; : 7 € N},
where each X; is a closed discrete subset, and X has the property ACF (=All compact
subsets are finite). On the other hand, the first author generalized both compact-finite and
HCP families to CF,CF* families such as: A family U/ of subsets of a space X is called
CF in X if U|K (the family of the intersections of members of Y with K) = {Uy,--- ,Ui}
is finite for each K€ K(X'), and called CF* in X if additionally the following is satlsﬁed:
If |U;| > Ro, then {U € U : UN K = U;} is finite [5, Definition 3.1 and 3.6]. Taking the
implication

HCP — CF* - CF

into account, it is natural to propose the following conjecture:

(A) A space X has a o-CF* p.b. if and only if either X is an Ro-space or X has the property

ACF.
We note that since an Ro-space or a space with the property ACF has a o-CF*‘p.b. thls
conjecture is essentially the truth of the only if part. Our object here is to give an almost

positive answer.

2. Spaces with a o-CF* p.b.. Before the discussion, let us note that any space is the
quotient space of a space with a o-CF* p.b.. In fact, any space is the quotient space of a
space with the property ACF [7]. A space is called perfect if each closed subset is a G- set
The next gives an almost positive answer to (A).

Theorem 1. A space X has a o- CF* p.b. conszstmg of perfect subsets of X if and only
if either X is an Ny-space or X has the property ACF .
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Proof. If part is trivial. Only if part: Assume the negation of ACF, i.e., that there exists
an infinite compact subset K of X. Let P be a 0-CF* p.b. consisting of perfect subsets of
X. Let

P(K)={P€P:K C Pj.

Then P(K) is countable. We make the following additional assumption, under which we

show that X is an RNg-space.
Case (a): There exists another infinite compact subset L of X such that K N L = ¢.

Obviously
P(L)y={PeP:LCP}

is countable. Then it follows that P(K) A P(L) forms a countable p.b. for X. Indeed, let
C C U with C € K(X) and U € 7(X). Take disjoint U;,Us € 7(X) such that K C U; and
L C U,. Then there exist P, € P(K) and P; € P(L) such that

KuCCP cU, UU and LUCCchUguU,

which implies C C AN P, CU.
Case (b): Let K be a Gs-set of X. Note that K is metrizable because K has a G-
diagonal. Then easily we can choose a countably family W of open subsets of X closed

under finite intersections satisfying the following: If K’ is a compact subset of K, then we
have K' = N{W : W € W(K")}, where

WEN={WeW:K cW}
In this case, we show that
Q={D\W:D e P(K),W € W} UP(K)

forms a p.b. for X. Let C C U with C € K(X) and U € #(X). If K C U, then obviously
KuCcCc PcCUforsome PeP(K). If K" =K\U # ¢, then by the property of VW above,
there exists W € W(K') such that K' C W C X \ C. Take P € P(K) such that

KuCcPCcUuW

Then easily we have C C P\ W C U.
Assume .the negation of both.(a) and (b), under which we show. a contradiction. Let

P*(K) be the totality of finite intersections of members of P(K). Let z ¢ K be fixed for a
while. Take disjoint open subsets U(z), V(x) of X such that z € U(z) and K- C V(z). We

settle the following claim:

Claim: There exists P(z) € P*(K) such that
{z} UK C P(z) CU(z) UV (z)
and

U(z) N P(z) = {z}.

The proof of claim: Otherwise, it follows that U(z)N P(z) is infinite for each P € P*(K)
such that
{z} UK C P c U(z) UV(z).
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Choose {P :n € N} C P(K) such that
{.’L‘}UK C Pn+1 CP,cU(z)uV(x)

for each n and such that if {z}UK CcU € 71(X), then {2} UK C P, C U for some n. Since
U(z) N P, is infinite for each n, we can choose a sequence {z, : n € N} of points such that

Zn € (Pa\ {2}) NU(2) \ {21, ,Tn-1}

for each n. This implies -
L={z,:n€ N}U{z} € K(X)

and LN K = ¢, which implies (a). Thus the claim is settled. By the nagation of (b), X'\ K
is uncountable. Since P*(K) is countable, there exists P, € P*(K) such that

oy . D={seX\K:P()="P)

is an uncountable discrete subset of Fy. By the perfectness of Fy, there exists an uncountable
closed discrete subset Dy of P,. Since P is a p.b. for X, for each F € F(D,) (= the totality
of non-empty finite subsets of Dy) we can take P(F') € P*(K) such that KUF C P(F) and
P(F)N Dy = F. But this is a contra,dlctlon because {P( ) : F € F(Do)} is uncountable.

This completes the proof.

According to Sakai’s example [7], a space with a o-CF* p.b. need not be perfect. In
fact, there he constructed a space X with the property ACF but X is not countably
metacompact. A space X is called ¥;- -compact if every closed discrete subspace of X is
countable [2], and X is called o-discrete, o-closed discrete if X = U{X, : n"€ N} where
each X, is discrete, closed discrete in X, respectively. '

Corollary 1. If a space X has a o-CF* p.b., then one of the fallowmg three cases holds:
(1) X is an Ng-space.

(2) X has the property ACF.

(3) X is an Ny-compact, o-discrete space..

Proof. We show that under the negation of both (1) and (2), (3) is true. We repeat the
same discussion as above. By virtue of the claim, for each z ¢ K there exist P(.'B) € P*(K)
and an open neighborhood U(z) of z in X such that

Ku{z}C P(z) and U(z) ﬂ P(z) = {z}.
For each P € P*(K), set .
D(P)={zx € X\ K : P(z) = P}.

Then each D(P) is a discrete subset of X. We note that in the previous proof we can
assume that K is a convergent sequence w1th its limit point. Hence we have "

X =U{D(P): Pe P*(K)}UK

is the union of countably many discrete subsets of X. If X is not N;-compact, then there
exists an uncountable closed discrete subset D of X. By the repetition of the last part
below (*) in the proof of Theorem 1, we have a contradiction. Hence X is R;-compact.
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Corollary 2. Our conjecture (A) is true if the following conjecture (B) is true: (B) Let
X = KUD, where K is an infinite compact subset and D is an uncountable discrete subset
of X such that K N D = ¢ and let X be ¥,-compact. Then X has no o-CF* p.b..

Proof. Assume the validity of (B) and X has a o-C F* p.b.. Then by the proof of Theorem
1, one of the following three cases holds: (1) X is an N;-space, (2) X has the property ACF
and (3) there exists an uncountable discrete subset D and an infinite compact subset K of
X such that KND = ¢. By the same way as the proof of Corollary 1, we can show that the

subspace K U D is an R;-compact space. Since o-CF* p.b.s are hereditary to any subspace
of X, K UD has a o-CF* p.b.. But this is a contradiction to (B). Hence either (1) or (2)
holds, implying the validity of (A).

Theorem 2. If a space X has a o-CF* p.b., then X is Lindelof or X has the property
ACF.

Proof. et P be a o-CF* p.b. for X. Assume that X has an infinite compact subset of
K. It suffices to show that X is Lindelof. Let ¢ be an open cover of X. For each z € X,
there exist P(x) € P and a finite subfamily ¢ (z) of U such that

{z} UK C P(z) C UlU(z).
Note that Py = {P(z) : ¢ € X} is countable. For each P € Py, let
X(P)={z € X : P(z) = P}

and take a finite subfamily Z(P) of U such that X(P) C VU(P). Then U{U(P) : P € Py}
is a countable subcover of U, proving that X is Lindelof.

A space X is called a k-space if FF C X is closed if and only if FF N K is closed in K for
each K € K(X). In the class of k-spaces, conjecture (A) is true. More strictly, we have the
following characterization:

Theorem 3. Let X be a k-space. Then X has a o-CF* p.b. if and only if X s either

an No-space or a discrete space.

Proof. If part is trivial. Only if part: Assume that X is not a discrete space. Then there
exists an infinite compact subset because of k-ness of X. By virtue of Theorem 2, X 1is
Lindelof, hence Y;-compact. On the other hand, it is easily seen that a C'F'* family in a

k-space is WHCP in it in the sense of [2|. Therefore X has a o-WHCP p.b. By virtue of

12, Lemma 1] X is an Ng-space.

A space X is called a Frécet space if whenever z € A there exists a sequence in A

converging to z. A Fréchet space is a k-space. Under Fréchet spaces, we have a more
stronger characterization of spaces with a o-C'F* p.b.. For that matter, we prepare the

characterization of Frechet Rg-spaces.

Lemma. . For a space X, TFAE:

(1) X is a Fréchet Ng-space.

(2) X is a closed image of a subspace M of a Cantor set.
(3) X is a closed image of a separable metric space.

Proof. (2) — (3) — (1) is trivial. We show (1) — (2). Let P = {P(n) : n € N} be p.b.
for X such that each P(n) is closed in N. Without loss of generality we can assume that P
is closed under finite unions. For each n, let

A(n) = {P(n), X \ P(n)}
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be a discrete space. Define a subspace M of II{A(n):n € N} and a mapping f: M — X
as follows: - -

M = {{Q(n)) € IA(n) : {W is a local

network at some point of X }

F({Qn) = NQ(m) for each (Q(n)) €

For the latter use, we notice here the following cla,lm the proof of which is the same as in
Foged’s one [1, Lemma, 4].

Claim: let z € U € 7(X) and Z be a convergent sequence of points of U such thet
Z — x. Then there exists P(n) € P such that P(n) cU r.md Z is eventually in IntP(n)

- With the aid of the claim, we show tha.t f has the requlred propertles To see that f is
onto,let z € X. If z is 1sola,ted then it is easy to find (Q(n)) e M with f((Q(n))) = .
Let = be not isolated. By Frechetness of X, there exists a sequence Z of points of X \ {z}

with Z — z. For each n, we choose Q(n) € A(n) such that Q(n)N Z is infinite. To see that

{Q(n)} is a local network at z in X, let z € U € 7(X). By the claim above, there exists
n € N such that P(n) C U and Z is eventually in IntP(n). This implies Q(n) = P(n)
and z € Q(n) C U. Hence we have f({(Q(n))) = z. The continuity of f follows easily from
the definition of M. Finally, we show that f is closed. Let A be a closed subset of M and
suppose p € f(A)\ f(A). There exists two sequences {P,} and {{(Q,(k)) : n € N} satisfying
<Qn(k)) € A,n G_N and |

f((Qn(k)))-—P — pasn — 0o.

By induction we choose (Q(n)) € M as follows: Choose Q(1) € A(l) such that N; =
{n € N:Q,(1) = Q(1)} is infinite. Then we notice that Q(1) contains {p, : n € N;}.
By the same way we choose Q(1) € A(2) such that No = {1 € N1 : Qn(2) = Q(2)} is
infinite. We continue this process. By the same argument as above, we have (Q(n)) € M

and f({Q(n))) = p. Since (Q(n)) € {(Qn(k)) :n € N}, (Q(n)) € A C A, which implies
p € f(A). But this 1s a contradiction.

" Theorem 4. For a spa.ce X TF AE .

(1) X is a Fréchet space with a o- -CF* p.b..

(2) X is a Fréchet space with a o-HCP p.b..

(3) X is either a discrete space or a closed image of a subspace of a Cantor set.
(4) X is either a discrete space or a closed image of a separable metric space.

Proof. (1) & (2) follows from [5, Proposition 3.8]. (1) — (3) — (4) — (1) follows from
the previous lemma and Theorem 3.

3. The hyperspaces and o¢-CF* p.b.s. For a space X, let X(X) be topologized with
the finite topology. That is, K(X) has a base consisting of all subsets of the following form:

{Up, - U)={KeK(X): Kcu{U;:1<i<k)
and K NU; # ¢ for each 1,

where {U;, - Uk} is a finite family of open subsets of X. ‘It is known that regular T,-
spaces are 1nher1ted to X(X) [3] and also that No-spaces are so [4]. This is used in the next
theorem. | -

Theorem 5. Let X be a space. Then
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(1) X has a c-HCP p.b. if and only if so does K(X).
(2) X has a o-CF* p.b. consisting of perfect subsets of X if and only if so does K(X).

Proof. If parts of both (1) and (2) are easily seen because X is homeomorphic to the
closed subspace of K£(X). Only if part of (1): Let X have a o-HCP p.b.. Then by the

characterization due to Lin stated in the introduction, X is either an Ny-space or a o-closed
discrete space with the property ACF. If X is an Ng-space, then so is X(X) [4]. Suppose
that X has the property ACF. Let C be a non-empty compact subset of X(X). Then by
[6, Theorem 0.2], UC is compact in X. By ACF, UC is finite; consequently C is finite. This
implies that (X)) has ACF. Under ACF,K(X) coincides with the set of non-empty finite

subsets of X. Therefore if X is a o-closed discrete space, then so is K(X). Using Theorem
1, the case of (2) is similar to (1).

For the case of o-C'F* p.b.s., we do not know whether the following (C) is true or not:

(C) A space X has a o-CF* p.b. if and only if so does X(X). But we can show the
equivalence of (A), (B) and (C).

Proposition. Conjectures (A), (B) and (C') are equivalent:

Proof. (B) — (A) 1s due to Corollary 2. (A) — (C) is shown in the proof of Theorem, 5.
(C) = (B): Let X = K U D be the same as in (B). Assume that X has a ¢-CF* p.b.. By
(C), K(X) has a o-CF* p.b.. For each pair z,y of distinct points of D, let

C={{z,p}:p€ K} and C'={{y,p}:p€ K},

Then C and C’ are disjoint, infinite compact subsets of X(X). Then by the argument of the
case (a) in the proof of Theorem 1, K(X) is an Ng-space. Consequently X is an Ng-space.
But D is an uncountable discrete subset of X. So this is a contradiction. Hence we establish

the equivalence of (A), (B) and (C).

With respect to the conjecture (C), if we weaken the condition CF* families to CF
families, then we have the following positive result:

Theorem 6. A space X has a o-CF p.b. if and only if so does K(X).

Proof. If part is trivial. Only if part: Let P = U{P(n) : n € N} be a p.b. for X, where
for each n P(n) C P(n+ 1) and P(n) is CF in X. For each n let

(P(n)) = {(Pr,-+, Py) :
Py, ,P, € P(n)and k € N},

where

(P, P )={KeK(X): KCU{F,:1<iLk}
and K N P; # ¢ for each ¢}.

First we show that for each n{P(n)) is CF in K(X). Let C be a non-empty compact subset
of X(X). Then by [6, Theorem 0.2], C = UC is compact in X. Since P(n) is CF in X, we

have
P(n)|C ={QQ), -+ ,Q(k)}.

Let {Q(6(3)) :i = 1,---,t} be the totality of finite subfamilies of {Q(1),---,Q(k)} such
that for each 2

(Q(6(2))) = {K € K(X) : K C UQ(6(i))
and K NQ # ¢ for each @ € Q(6(3))}
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intersects C. Let (Py,---,Pp)NC # ¢, where {P,,--- ,P,} C P(n). Then all P; intersect
C. So, there exists §(z) with 1 <7 < ¢t such that

{P1,--, Pn}IC = Q(6(3)).
Then we have

(P, Pm) NC = (Q(6(3))) N C

Hence (P(n)) is CF in K(X).

Let P be the totality of finite unions of members of U{{P(n)) : n € N}. Then P is easily
seen to be a o-CF family in X(X). We show that P is a p.b. in K(X). Let KX C U, where
K is a compact subset of K(X) and U is an open subset of K(X). Then we show that there
exists P € P such that X C P ¢ U. We consider the followmg two cases:

Case 1: Let U be a basic open subset of K(X ), i.e.,

— (UI:“' !Uk)!U].!-.“ aUk € ‘T(X)

Since K is compact and K(X) is regular, there exists a finite open cover {V(1),---,V(n)}
of K such that ) .... )
K C bigcup; V(i) C UC’I(V(i)) cU,

where each V(z) is a basic open subset of K(X). Let 1 < < n be fixed for a while and let
IM/(z) — (VI:"' !VS):VI:"' :VH € T(X)
For the latter use, we notice the following two facts:

CUV () = (Vi,---, Vi)
={K € K(X): K c| JV; and

(1) K nV; # ¢ for each i} ([3, Lemma 2.3.2}).
X | X 8 k
(2) CiV@) cU= |V c| U
| 71=1 1=1

and for each ¢ with 1 < ¢ < k there exists j(z) W1th 1<j(i)<s suth that Vj(,;) C U; ([3,
Lemma 2.3.1]).
Let

={j(@):i=1,--- Jk}, Ny ={1,---,s}\ No.
By virtue of [6, Theorem 0.2]

K@i)=U{K:K e KNCI(V(3))}
is .compa,ct in X and it is easily seen that

K(i) e (i, ,Vs) C{Uy,---, Ug).
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For each 5 € Ny, choose P; € P such that
Ki@)nV;, C P; c n{U;:j() = j}.

For each 57 € Ny, choose P; € P such that

k
K(i)ﬂf/}CPj C UU,'.

1—=1

Easily we have ﬁ - ﬁ
Kn Cl_(V(i)) C (P, - ,P)CcU

and

(Pp,---, Pa) € (P(t(i)))

for some t(i) € N. Running 7 from 1 to n, we have
KcPcU

for some P € P. )
Case 2: Let U be an open subset of K(X). From the definition of the base for the

topology of K(X), there exists a finite cover {U{z) : i € 4,--+ ,h} of K consisting of basic
open subsets of K(X) such that K C | J; U(:) c U. Since K is compact, there exists a closed
cover {K(i) :i=1,--,h} of K such that X(i) C U(3) for each i. By virtue of the case 1,
for each i we can find P(:) € P such that K(z) C P(3) C U(3).

Hence we have K C |J, P(3) C U and P =/, P(i) € P, because P is closed under finite
unions. This completes the proof. '
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