A Note on Spacs with a Locally Countable K —network

Lin Shou

(Department of mathematics, Ningde Teather's College Ningde 352100)

Abstract In this paper it is shown that a regular space has a locally countable k—network if and only if it has a locally countable cs—network. As its application, a perfect preimage theorem on spaces with a locally countable k—network is established.

Key words and phrases k—network, cs—network, locally countable family, perfect map.

AMS Classification 54E20,54D55

Let us recall some definitions. Let X be a space, and $\mathscr P$ be a cover of X. Then $\mathscr P$ is called a k-network for X if, whenever $K \subset U$ with K compact and U open in $X, K \subset \bigcup \mathscr P' \subset U$ for some finite $\mathscr P' \subset \mathscr P$. Then $\mathscr P$ is called a cs-network for X if, whenever K is a sequence converging to $x \in K$, and U is a neighborhood of X, there is $P \in \mathscr P$ such that $x \in P \subset U$, and P contains K eventually.

A collection \mathscr{P} of subsets of a space X is said to be locally countable if for each point of X there is a neighborhood which intersects at most countably many elements of \mathscr{P} . \mathscr{P} is said to be star—countable if each element of \mathscr{P} intersects at most countably many elements of \mathscr{P} .

For a space X and $P \subset X$. P is sequentially open in X if , whenever $x \in P$ and $\{x_n\}$ is a sequence converging to x in X, then $x_n \in P$ for all but finitely many $n \in N$.

We assume that spaces are regular and T_1 , and maps are continuous and onto. Unexplained notions and terminology are the same as [5].

Spaces with certain locally countable covers, for example, spaces with a locally countable k—network, spaces with a locally countable weak base, spaces with a locally countable cs—network, have been widely studied in [4,6,8]. In this paper, we affirmative answer the following question posed by Chuan Liu in [8].

Question. [8, Question 2.1] If a regular space X has a locally countable k—network, then does X have a locally countable (or point—countable) cs—network?

Lemma. [1, Lemma 3.10] Let \mathscr{P} be a star—countable collection of subsets of a set X. Then we can set $\mathscr{P} = \bigcup \{\mathscr{P}_a \colon a \in \Lambda\}$, where each \mathscr{P}_a is a countable subcollection of \mathscr{P} and for two distinct $\alpha, \beta \in \Lambda$, $(\bigcup \mathscr{P}_{\beta}) \cap (\bigcup \mathscr{P}_{\beta}) = \emptyset$.

We call $\{\mathscr{P}_{\alpha}: \alpha \in \Lambda\}$ in the Lemma a docomposition of \mathscr{P} .

Received June 10,1997

^{*} This work was Supported by the NNSF of China

Theorem. The following are equivalent for a space X:

- (1) X has a locally countable k —network.
- (2) X has a locally countable cs network.

Proof. It only need to show that (1) implies (2). Let $\mathscr R$ be a locally countable k—network for X. By the regularity of X, We can assume that each elements of $\mathscr R$ is closed in X. For each $x \in X$, there is a neighborhood U_x of x in X such that U_x intersects at most countably many elements of $\mathscr R$. Put $\mathscr P = \{P \in \mathscr R: R \subset U_x \text{ for some } x \in X\}$. Then $\mathscr P$ is a star—countable k—network for X. Let $\{\mathscr P_a: \in \Lambda\}$ be a decomposition of $\mathscr P$. For each $a \in \Lambda$, let $\mathscr F = \{\bigcup \mathscr F': a \text{ finite } \mathscr F' \subset \mathscr F \}$, $T_a = \bigcup \mathscr F_a$. Then $\{T_a: a \in \Lambda\}$ is a locally countable and disjoint cover of X. Let $\{x_n\}$ be a sequence converging to x in X, there is a unique $a \in \Lambda$ with $a \in T_a$. Let $a \in X$ be a neighborhood of $a \in X$, then $a \in X$ is a unique $a \in X$ with $a \in X$ and $a \in X$ be a neighborhood of $a \in X$. Let $a \in X$ is a neighborhood of $a \in X$. Let $a \in X$ is a neighborhood of $a \in X$. Let $a \in X$ is a neighborhood of $a \in X$. Let $a \in X$ is a neighborhood of $a \in X$. Let $a \in X$ is a neighborhood of $a \in X$. Let $a \in X$ is a neighborhood of $a \in X$ is a neighborhood of $a \in X$. Let $a \in X$ is a neighborhood of $a \in X$ is a neighborhood of $a \in X$. Let $a \in X$ is a neighborhood of $a \in X$ is a neighborhood of $a \in X$. Let $a \in X$ is a neighborhood of $a \in X$ is a neighborhood of $a \in X$ is a neighborhood of $a \in X$.

Remarks. (1) The sequential openness of the cover of X in the Theorem is essential. For example, the countable ordinal space ω_1 has a locally countable and disjoint cover $\{\{\alpha\}: \alpha < \omega_1\}$ of singletons, but ω_1 does not have a point—countable k—network by [5].

(2) The sequentially open cover of X can not be improved the open cover of X in the Theorem. It is easy to prove that a space has a locally countable (and disjoint) open cover of countable cs—networks if and only if it is a paracompact space with a locally countable cs—network. A space with a locally countable cs—network may not be a paracompact space by [4, Example].

```
(3)By the Theorem and its proof, we have that

spaces with locally spaces with locally

countable k—networks ⇔ countable cs—networks

spaces with star— spaces with star—

countable closed k—networks⇒countable closed cs—networks

spaces with star— spaces with star— spaces with point—

countable k—networks countable cs—networks⇒countable cs—networks.
```

The Fortissimo space X(p) in [5. Example 2.5.19] has a star—countable closed k—network, but it does not have a locally countable k—network. The fan space S_{ω_1} in [8. Example 1.13] has a star—countable k—network, but it does not have a point—countable cs—network. The Stone—Cech compactification βN has a star—countable closed cs—network, but it does not have a star—countable k—network. The hedgehog space $J(\omega_1)$ in [2. Example 4.1.5] has a point—countable cs—network, but it does not have a star—countable cs—network.

Quettion 1. Does a space with a star—countable cs—network have a point—countable closed cs—network?

Corollary. Suppose $f: X \to Y$ is a perfect mapping. If X has a local G_{δ} —diagonal, and Y has a locally countable k—network, then X has a locally countable k—network.

Proof. By the Theorem, Y has a locally countable and disjoint sequentially open cover $\{Y_a: \alpha \in \Lambda\}$ such that each Y_a has a countable cs—network. For each $\alpha \in \Lambda$, put $X_a = f^{-1}(Y_a)$, $f_a = f_{|X_a}: X_a \rightarrow Y_a$, then f_a is a perfect mapping, so X_a is a paracompact space. Thus X_a has a point—finite open cover of G_b —diagonal subsets. Since G_b —diagonal property satisfies the point—finite open sum theorem by [3], X_a has a G_b —diagonal. And since a space with a G_b —diagonal has a countable cs—network if it is a perfect preimage of a space with a countable cs—network by [7], X_a has a countable cs—network. Therefore $\{X_a: \alpha \in \Lambda\}$ is a locally countable and disjoint sequentially open cover of countable cs—networks, C has a locally countable C —network.

Spaces with a locally countable k -network have a local G_{δ} -diagonal.

Question 2. Does a space with a locally countable k —network has a G_{δ} —diagonal?

References

- Burke D. Covering properties, in Handbook of Set-Theoretic Topology Elsevier Science Publishers, B. V, 1984, 347-422
- 2 Engelking R. General Topology Polish Scientific Publishers, 1977
- 3 Gittings R. Open mapping theorems, in Set-Theoretic Topology Academic Press, 1977, 141-191
- 4 Shou lin. Spaces with a locally countable k network, Northeastern Math. J. 1990(6):39-44
- 5 Shou Lin. Generalized Metric Spaces and Mappings China Science Press, 1995
- 6 Chuan liu and Mumin Dai. Spaces with a locally countable weak base, Math. Japonica 1995, (41): 261-267
- 7 Mancuso V. Inverse images and first countability, General Topology Appl. 1972, (2): 29-44
- 8 Tanaka Y and Shengxiang Xia. Certain s—images of locally separable metric spaces. Questions Answers in General Topology, 1996, (14):217-231

具有局部可数 K 网空间的注记

林寿

(宁德师范高等专科学校数学系 福建 352100)

[摘要] 证明了一个正则空间有局部可数 K 网当且仅当它有局部可数 CS 网,作为其应用,本文建立了具有局部可数 K 网空间的完备逆映象定理。

关键词 $K \bowtie ; CS \bowtie ; 局部可數族; 完备映射$ 中图分类号 O189

国家自然科学基金资助课题