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All spaces are regular and T4, and all mappings
are continuous and onto.
In this paper we discuss the perfect preimages of

s having a Gg-diaconal.

p

generalized metrizable space
The classes of spaces discussed are restricted to the

L34

one of spaces studied by Gruenhage inl6l. We knew
that the perfect preimage of even a compact metric
space need‘not have a Gg-diagonall9], hence for a
class P of generslized metrizable spaces having a

Gg-diagonal, the following problem is consgiderad:

FROBLEM. Suppose f:X-»Y 1is a perfect mapping. 1T

>

the space X has a Gg-diagonal, and if the space ¥

belongs to the class P, does X belong to the class P?
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The problem first was discussed by Okuyama and
Boreces. They independently proved that answer of the
problem is positive for the class of metrizable
spaces[2, 11]1. Borges [2] still proved that answer
of the problem ig sffirmative for the clagss of stra-
tifiable spaoeé. Mancugo [9] proved that for the
clasges of X,~spaces, cosmic spaces Or spaces with
uniform bases, and Atkins and Slaughterf[i1] proved

that for the classes of developable spaces, ¢-spaces

or semigtratifiable spaces, answer of the problem 1is

all true. InI81, we proved that for the class of -
spaces, answer of the problem is still true. loreover,
‘Burkel3] constructed an example showing that answer

of the problem is negative for the class of sub-

metrizable gapaces.

Theorem 1. Suppose there exists a perfect mapping
f from the topological space X onto the semimetrizable
space Y. If X hses a Gg-diaronal, then X is a semi-

metrizeble space,
Proof. It is well-knovn that a space is a semi-

metrizable space if and only if it is a first coun-

table semistratifiable spaceI4J. 3ince a perfect
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nreimage of o senmigbratifiable space 1s & semi-
stratifiable gpace if and only if il has a Gg-
Aioconalfl]l ,it is suflficient 1o show that X is first

countable., Let e X, end let v = f(x). Since Y is

firgt countable, let (U.) he a decreaging local

- p

hasge at y in Y. LHinc

.
r

nea a Gg-diagonal, and fky)
Ls a compact subspace of bt . f-'(y) is metrizable.

Let (V1) be 2 decreaging locnl base at x in fq(y).
By regularity, choose an open set Wy in X such thas
W G ™ (Un), x €', fl"f"(y) cV, and cl(Vps1)eWn for

all ne If (Wn) is not a local base at x in X, then

there exists a neishbourhood I of = in X such that

- I, Then

() :

Cl (Y.tirrn — I.I) -y UQ,] ( Cl 1‘a'm;{l'n) — II)
I “' 'y T D g .
- N O N - 3 =) = 8

hence set {x,, : n=1,2,...} has not cluster point in
Xy, 80 2ll ite subset are closed in xX. Take 1 such
that f-' (‘:y) <l for all nd>i. Then {xn ; n>i }

3o élosedfin X, so f({xy : n>i}) 4is closed in Y.

i, =L
Cnn the other haund, F (L) - I(y), thus

. n>i}),'a ContradiCtiQno
Therefore X ig a8 first countable space, and X ig 2

iy

semimetrizable spsce.
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A closea 1mwase of o meibrizable space 1s called

a. IaSnev space o X ig 0 .E.Fﬁf_‘(f;(‘j].lé',} space 1T for every
Azl and every X q-“-; cl(A) tiweve exigts a sequence of
noints of A converxrging wo K. LVery Tadnev 3pace 18
1et, Tet I he a non-metvizable La Snev space |,

ancd let I be tae unly intke rval with the usual
nonology. Then XX 1T is nov 2 %ﬂev upaan‘IO] But
the vrojective mapping Tl xT-=X is perfect, and
XXI has a > ~diagconal, 2answer of tne problem above
| e

& o .‘/ *
ig negative for the class of Tasnev spaces. Desplue

21l this, we have the following result.,

Theorem 2. nuppose there exists a perfect mapping
£ from the topological space ¥ onto the La:gnev anace
'Y, If X is a Frechet space with a GS--d..iagonal , . Lhen

., e V.
X is a Lagnev sgpace.

Proof. Since ¥ ig a Iasnev gpace, Y is & para-

e

compact space, and sgince I ig perfect, X 1s a para-
compact space. Tor the paracompact space L with a

G --diagonal, there exists o metrizable space I and

a continuous, one-to-one mappimg g from X onto I

xXr

'5, Corollary 2.9, llow we define mapping h from .

snto ¥ x 1 sueh that h(x) = ((£f(x),g(x)) for each




X 2 Xe Clesrly, h ig coulirmous and one-to-one,

~ e S 1 B PN . mo., ~ i

hince £ ig perfect, h ig pewrlect!hH, Tiecorem 3.7.9 .
s

ot VA =Y P Y Va - ~ b ~ 4 n 2 YW’

So W(X) ig a Trechet zubegrace of Y <11, Since every

Frechet subgprace of vne prodiict of countably meny

X

vsnev snacel[12 ', h ( ) is a

& -
18
A

4
Lasnev gpaces is a

v - | . ’ . - - | '
Lagnev gpace, and since L ig perfect and one-to-one,

| Y <y

h is a homeomorphism emhedding, hence X is Lac inev.,

Corollary 3. Dupmose ¥ ig o Lafnev space and

e ..
A

A=Y 1o an open,clo&ed, finite-to-one mapping,

xr "t

then X LS D ‘r:ﬁu 12V SpPACe.

_ -
<~ .. o “r g ® o
rroof. nince 1 is Lasgnev, Y 1is & 0-space, and

f'l‘]

hore exicstae a collection

=5
=
N
.
¢S
-
o
R | N
e
s
—
v
=
AW,
w
&
9
.
@
3
—
(D,
@

. =

el cuhsets of X such thet
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A g ~ 7 4- Sl g ‘) —~ = T e v o (-rr- \7. ! f( 1‘] o
converges to T{m1). Tinee I ={f(xzq)i U i L(2n) 1 2 RN

-
A n <r T8 4 da . _ .
ig a compact puheet of ¥V, T (%) ig a cownact anbast
-t-'-"

/-rr & _ _ - - - g ,r R ¢~ ™y £ -

of Xo So £ {¥) ig o compnce’ gpacc with a Gg-diagonal,
o

o . e v . R moy_ . i
e oe § (__r) LE 9 OMNAcCt merrizable o I CE Thnerecliore
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Lo wequence [ n. . v T 000 hao g conversent gube
SoG0NCe 2, R Duppoon o yoo o LONT LT 50 Z o X nen

n el (Vq), 2117 f{rea) = £z}, thug 71 - z. Uence the
COQUSIICe {25y oL A conversen to xq. X ods a Treches
apacn, Theraloea 0 4o 0 T Few SNO.C2 DY mth“ﬁ” 2 e

L srace is a Tadnev zpace if end only if it iz oa

Tréachet space with a w=lereditarily closure-preserving
k-network. rrom Theoren 2, onc nay conjecvure that a
space with a Gg-diagoneol g a g=heredivarily closure-
aregerving k-network 1f it is a perfect preimage of

4

COTrIeCve
3DACE
editarily clos ure-prus

r

the space X x I with a Gy

s F=-hereditorily closure-preserving k-

In [13]lwe proved that

Ly, AX 1 has not a

rving k-network, thus
~-diarsonal is a perfect pre-

ith & ¢~-hereditarily closure-

Problem., Is a perfect preimage of an iij-space an

S

li9~-space if it has a G

"\_)

1a~onal %

‘?
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