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Abstract 

In this paper we discuss three questions about the quotient s-images of metric spaces. The main 
results are: 

(1) X is a sequential space with a point-countable cs-network if and only if X is a compact- 
covering, sequence-covering, quotient and s-image of a metric space. 

(2) Let X and Y be sequential spaces with point-countable cs-networks, then X x Y is a k-space 
if and only if one of the three properties below holds. 

(a) X and Y are first countable spaces. 
(b) X or Y is a locally compact space. 
(c) X and Y are local k~-spaces. 
(3) Let f : X -+ Y be a pseudo-open s-map. If X is a Fr6chet space with a point-countable 

cs-network, then Y is a Fr6chet space with a point-countable cs*-network. 
They partly answer three questions posed by Michael and Nagami (1973), Tanaka (1983), and 

Gruenhage, Michael and Tanaka (1984) respectively. 
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0. Introduct ion 

Since generalized metric spaces determined by point-countable covers were discussed 

by Burke and Michael in [2] and Gruenhage, Michael and Tanaka in [5], point-countable 

covers have drawn attention in general topology. Partly, that is because point-countable 
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covers are closely related to spaces with point-countable bases, and quotient s-images of 
metric spaces. The problem posed by Arhangel'skii in [1] about the quotient s-images of 

metric spaces is answered affirmatively by Tanaka in [19]. 

Lemma 0.1. A space X is a quotient (pseudo-open) s-image o f  a metric space if and 

only if X is a sequential (FrOchet) space with a point-countable cs*-network. 

Though Arhangel'skii's problem is answered, point-countable covers and related ques- 
tions are noticeable. For example: 

Michael-Nagami's question [13]. If a space X is a quotient s-image of a metric space, 

must X also be a compact-covering quotient s-image of a metric space? 

Tanaka's question [18]. For quotient s-images X and Y of metric spaces, what is a 
necessary and sufficient condition for X × Y to be a k-space? 

Gruenhage-Michaei-Tanaka's question [5]. Are pseudo-open s-images of metric 

spaces preserved by pseudo-open s-maps? By perfect maps? 

By Lemma 0.1 the above three questions can recount three equivalent questions by 
cs*-networks. In this paper we shall establish three similar theorems by means of the 
concept of cs-networks, which partly answer the three questions mentioned above. 

We recall some basic definitions. 

Definition 0.2. Let X be a space, and let 7 9 be a cover of X. 

(1) 79 is a network if, whenever z E U with U open in X, then z E P C U for some 
P E 7 9. A subfamily 79' of 7 9 is a network at z E X if z E ['1 79' and whenever z E U 
with U open in X,  then P C U for some P E 79~. 

(2) 7 9 is a cs-network [6] if, whenever {xn} is a sequence converging to a point a: E X 

and U is a neighborhood of z, then {x} U {z~: rL/> m} C P C U for some m E N and 

some P E 79. 
(3) 79 is a cs*-network [3] if, whenever {z,~} is a sequence converging to a point 

:c E X and U is a neighborhood of :c, then {z} U {0c,~: ~ E N} C P C U for some 
subsequence { z ~ }  of {:r,~} and some P E 79. 

(4) 79 is a k-network [14] if, whenever K C U with U open and K compact in X,  

then K C U 79~ c u for some finite 79' C 7 v. 

Definition 0.3. Let f : X --+ Y be a map. 

(1) f is an s-map if every f - l ( y )  is separable for each y E Y. 
(2) f is a compact-covering map [9] if each compact subset of Y is the image of a 

some compact subset of X. 
(3) f is a sequence-covering map [5] if each convergent sequence of Y is the image 

of some convergent sequence of X. 
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There is a different definition of a sequence-covering map in [5], namely it requires 

that each convergent sequence of Y be the image of some compact subset of  X.  In [5] 

it is shown that a space X is a quotient s-image of a metric space if and only if X is a 
sequence-covering quotient s-image of a metric space. 

We assume that spaces are regular and Tl, and maps are continuous and onto. 

1. On Michael-Nagami's question 

Michael -Nagami ' s  question is whether a sequential space with a point-countable cs*- 
network is a compact-covering quotient s-image of a metric space by Lemma 0.1. The 
main result of  this section is that a sequential space with a point-countable cs-network 

is a compact-covering quotient s-image of a metric space. First of  all, we characterize a 

space with a point-countable cs-network by maps. 

Theorem 1.1. A space X has a point-countable cs-network if and only if X is a 

sequence-covering s-image of  a metric space. 

Proof .  Let X be a space with a point-countable cs-network 79. Suppose 79 is closed 
under finite intersections. Denote 79 by {P~: a E A}. Let Ai denote the set A with 
discrete topology for each i E 1~1. Put 

M = ( /3 = ( a s ) E  1-[ Ai: 
iEN 

{ P ~ :  i E 1~} is a network at some point 

z(13) in X ~, 
J 

then M is a metric space, and f :  M E X defined by f(/3) = x(~3) is a function. It is easy 

to check that f is an s-map from M onto X.  We shall show that f is a sequence-covering 
map. For a sequence {x~} of X converging to a point x0 in X,  we assume that all x~ ' s  

are distinct. Let K = {xm: m E w}, and let K C U with U open in X ,  a subset .T of 
79 is said to have the property F ( K ,  U) if .T satisfies that 

(1) .T is finite; 

(2) 0 ~ P ~ K c P c U f o r e a c h P E . T ;  
(3) for each x E K there is a unique P~ E .T with x E P~; 
(4) if x0 E P E 3 r ,  then K \ P is finite. 

Put 

{ F  C 79: .T has the property F ( K ,  X ) }  = {)t'i: i E N}, 

for each i E N and each m E w there is a im E Ai with Xm E P ~  E .Ti. It can be 
checked that {P,~,~: i E N} is a network at the point x,~. Let ~3m = (a~m) for each 

m E w, then/3m E M and f(/3m) = xm. For each i E N, there is n(i)  E N such that 
t i n  = aio if n ~ n(i) ,  thus the sequence {c~in} converges to ai0 in Ai, and the sequence 
{fl,~} converges to/30 in M.  This shows that f is a sequence-covering map. 
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Conversely, suppose that f : M  --+ X is a sequence-covering s-map, where M is a 
metric space. Let B be a a-locally finite base for M, then {f (B) :  B E B} is a point- 
countable cs-network for the space X. [] 

Lemma 1.2. Let 79 be a point-countable cs-network for a space X .  I f  x E K f3 W with 

W open and K compact, first countable in X ,  then x E intK(P N K )  C P C W for 
some P E 7 9. 

Proof. Let {Vn: n E N} be a local base at the point x in K.  Put 

. ~ - -  { P N K :  P E 79, and P C W or P C X \ {x)},  

j c , = { F E ~ :  V ~ c F f o r s o m e n E N } ,  

then .T" is a point-countable cs-network for the subspace K,  and 7 is a neighborhood 
base at x in K by the proof of Lemma 7(3) in [8], thus x E intK(F) C K fq W for some 
F E ~ - , i . e . , f o r s o m e P E 7 9 x E i n t K ( P N K )  c P c W .  [] 

Let 7 ) be a family of subsets of X, and let K C X, denote that 

(791K) ° = { i n t K ( P A K ) :  P E 79}, 

(VlN) °-  = { clK(intK(P a K)): P E 79}. 

Let 79 and Q be families of subsets of X, denote that 

7 9 A Q = { P N Q :  P E 7 9 a n d Q E  Q}, 

79 < Q if for each P E 79 there is Q E Q such that P E Q. 

Lemma 1.3. A space X is a compact-covering, sequence-covering and s-image of a 

metric space if and only if X has a point-countable cs-network and each compact subset 

of  X is metrizable. 

Proof. The "only if" part is clear, so we only need to prove the "if" part. By Theorem 1.1, 
there are a metric space M and a sequence-covering and s-map f : M --~ X. We use the 
same notations as in the proof of Theorem 1.1, and show that f is a compact-covering 
map. Let K be compact in X, then K is metrizable and (791K) ° is a countable base for 
the subspace K by Lemma 1.2. Put 

7 / =  {P  E 79: intK(P N K)  7~ t~}, 

then 7-/is countable. Let 

{7-//' C 7/: 7-/' is finite and U (7/'IK) ° = K }  = {7/k: k N}, E 

then for each n , m  E N there is k E N such that 7/k < 7/,~ A7/,~. We assert that for each 
i E N there is j E N such that (7/31K) °-  < (7/~[K) °. In fact, for each z ~ K,  there are 
H E 7-(i, an open set G in K and Q E 7-/such that z E intK(Q N K )  C G C cl~:(G) C 
intK(H N K),  thus clg(intK(Q C? K))  C intK(H N K).  By the compactness of K, we 
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have a j E N with (74ilK) °-  < (74~1K) °. Take a subsequence {£i} of {7-tk} satisfying 
that £i  < 74i and (£~+~IK) °-  < (£~IK) ° for each i E N, then there is a finite Bi C Ai 
with/2i = {P~: cz E Bi}. Put 

r = {/3 = e 1-I 
iEN 

0 # ClK(intK(P,~,+~ r~ K))  c intK(P~, N K)  

for each i E N~, 
J 

then L is closed in ILEN Bi, and L is compact in II~r~ Bi. 
For each/3 = (c~i) E L, take a point z E r'Jicr~intK(P~, n K ) .  If W is open in X 

with z E W, then x E intK (P  n K)  C P C W for some P E 7 ), and there exists a finite 
7t' C 74 such that 

K\intK(PnK) c U (7t'IK) ° C UT-t' C X \ { z }  

because K \ intK(P A K) is compact, thus 74i = 74' U {P} for some i E N, hence 
x E P,~, C P C W, i.e., {P~:  i E 5I} is a network at the point z, so /3 E M and 
f(/3) -- x, therefore L C M and f (L )  C K.  

On the other hand, for each x E K and each i E 1~, put 

= { u  E x u} ,  

then b/i is finite and nonempty. If V E/gi+l, there exists U E/,/i with clK(V) C U. By 
the Ktnig Lemma [7], there exists an (c~i) E 1-LcN Bi with clK(intzf(P,~,+~ fl K))  C 
int r (P~,  r-1 K) E/-4/ for each i E 1~, hence (ai) E L and x E Ni~NintK(P~, N K) ,  and 
{P~,: i E N} is a network at x in X, i.e., f ( ( a i ) )  -- x, so f (L )  D K.  

In a word, L is compact in M and f (L )  = K, hence f is compact-covering. [2 

Theorem 1.4. The following are equivalent for a space X.  
(1) X is a compact-covering, sequence-covering, quotient and s-image of a metric 

space. 
(2) X is a sequence-covering, quotient and s-image of a metric space. 
(3) X is a sequential space with a point-countable cs-network. 

Proof. It suffices to prove that (3) ~ (1). Let X be a sequential space with a point- 
countable cs-network. By Lemma 0.1, X is a quotient s-image of a metric space, thus 
every compact subset of X is metrizable by [5, Theorem 3.3]. By Lemma 1.3, if there are 
a metric space M and a compact-covering, sequence-covering and s-map f : M  --+ X ,  
then f is also quotient. [] 

Remark 1.5. (1)/31~I is a compact space with a point-countable cs-network, but it is not 
metrizable. 

(2) The subspace 1~ U {p} (p E /3N \ 1~) of f in  has a point-countable cs-network, and 
each compact subset is metrizable, but it is not sequential. 

(3) There is a compact-covering, quotient and s-image of a metric space such that it 
is not a space with a point-countable cs-network by Remark 14(2) in [8]. 
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2. On Tanaka's question 

Michael, Gruenhage and Tanaka have made an attentive study for products of k-spaces 
[18], and obtained some beautiful results. 

Definition 2.1. Let X be a space. 
(1) X is a kw-space [11] if X has the weak topology with respect to a covering of 

countable many compact subsets of X. 
(2) X is an R0-space [10] if X has a countable cs-network. 

Lemma 2.2 [18]. Let X and Y be k and Ro-spaces, then X × Y is a k-space if and 

only if one of  the three properties below holds. 

(1) X and Y are first countable spaces. 

(2) X or Y is a locally compact space. 

(3) X and Y are local k~-spaces. 

For convenience's sake, a pair (X, Y) of spaces X and Y is said to have Tanaka's 
condition, if one of the three properties in Lemma 2.2 holds. 

Conjecture 2.3 (Tanaka, 1994). For the quotient s-images X, Y of metric spaces, X x Y 
is a k-space if and only if the pair (X, Y) has Tanaka's condition. 

The main results of this section are to prove that Tanaka's conjecture holds in the spaces 
with point-countable cs-networks, and to construct an example to show that Tanaka's 
conjecture does not hold under the set-theoretic hypothesis BF (~2). 

Theorem 2.4. Let X and Y be sequential spaces with point-countable cs-networks, then 

X x Y is a k-space if and only if the pair (X, Y )  has Tanaka's condition. 

Proof. If the pair (X, Y) of spaces X and Y has Tanaka's condition, then X x Y is a 
k-space [18]. Conversely, suppose X x Y is a k-space, by Theorem 4.2 in [16], then the 
following condition (C1) or (C2) holds. 

(C1) For each decreasing sequence {An} of subsets of X, if a point z E cl(A,~ \ {x}) 
for each n E N, then there exists a nonclosed subset {an: n C N} of X with each 

an E An. 
(C2) If {B,~: n E N} is a decreasing network at some point in Y, then some cl(B~) 

is countably compact. 
By [12, Theorem 9.5], Lemma 0.1 and the condition (C1), X is a countably bi-quotient 

s-image of a metric space, thus X has a point-countable base. By the condition (C2), Y 
has a point-countable cs-network consisting of separable metrizable subspaces. 

By the symmetry of spaces X and Y, to prove that the pair (X, Y) has Tanaka's 
condition, it suffices to discuss the following two cases. 

Case 1: X has a point-countable base and Y has a point-countable cs-network consist- 

ing of  separable metrizable subspaces. Since Y is sequential, Y has the weak topology 
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with respect to the cs-network for Y. If Y contains no closed copy of the sequential fan 
6:~ and no closed copy of the Arens' space 6:2, then Y is metrizable by Theorem 4.6 in 
[17]. If Y contains a closed copy of 6:~ or 6:2, then X x 6:~ is a k-space because S~ is 
a perfect image of 6:z, thus X is locally compact by [4, Lemma 3 and 4]. 

Case 2: X and Y have point-countable cs-networks consisting of separable metriz- 
able subspaces. First of all, we assert that X and Y are local N0-spaces. Let 79 be a 

point-countable cs-network consisting of separable metric subspaces, and let D(P)  be a 
countable dense subset o f /9  for each/9 E 7 9. For each a ff X, put 

79, = {/9c79: a P}, D , - - U { D / / 9 ) :  /9 c 79,}, 

and for each n />  2 inductively define that 

79n= { P ¢ 7 9 :  P A D n - , ¢ ~ } ,  D n = U { D ( P ) :  P ¢ P n } .  

Let 79' ---- UneN 79n, U -- U 79'. If  {xn} is a sequence in X converging to a point x 
in U and W is a neighborhood of x in X, then x ¢ P for some m ¢ 1~ and some 

I P e 7~ra, and there is a sequence {x~} in D(P) with x n --+ x in P, thus {x} U 
I . {xn ,x  n. n ~ k} C Q c W for some k ¢ N and some Q ¢ 7), so Q ¢ 79m+1 and 

{x} U {xn: n ~> k} C Q c U A W. This shows that U is a sequentially open subset of 
X and 79i is a countable cs-network for the subspace U of X. Since X is a sequential 

space, U is open in X, hence X is a local R0-space. By the same reason, Y is also a 
local ~o-space. Now, by Lemma 2.2, the pair (X, Y) has the Tanaka's condition. [] 

Let ~CO be the set of all functions from w into w. For two functions f and g in ~co 

we define f ~< 9 if and only if the set {n E co: f (n)  > 9(n)} is finite. BF(CO2) is the 
following assertion. 

BF(CO2): If F C ~co has cardinality less than wz, then there exists g E ~co such that 

f ~ < g f o r a l l f E F .  
It is known that CH implies that BF(co2) is false. 

Lemma  2.5 [4]. The following are equivalent: 
(1) BF(w2) holds. 
(2) 6:~ × S~ is a k-space. 

Theorem 2.6. Under BF(w2), Tanaka's conjecture does not hold. 

Proof. Let X be the Arens' space 6:2, then X is a quotient s-image of a locally compact 

metric space. Let I1 be a subset of the unit interval [0, 1] with cardinality COl. Let Z be the 
topological sum of [0, 1] and the collection {6:(x): x c 11} of COl convergent sequences 
S(x), then Z is a locally compact metric space. Let Y be the space obtained from Z by 

identifying the limit point of 6:(x) with x for each x E 11, then Y is a quotient s-image 
of a locally compact metric space. 

Under BF(oJ2), by Lemma 2.5, 6:~ × 6:~ is a k-space. Since 6:~ is a perfect image of 
6:2, X × S~  is a k-space. Let H be the space obtained from Y by identifying [0, 1] to a 
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single point, then H is homeomorphic to S~o~, and a perfect image of Y, hence X × Y 
is a k-space. It is easy to see that the pair (X, Y) does not have Tanaka's condition. [] 

3. On Gruenhage-Michael-Tanaka's question 

This question is whether every Fr6chet space with a point-countable cs*-network is 
preserved by pseudo-open s-maps or perfect maps. 

Theorem 3.1. Let f : X E Y be a quotient (pseudo-open) s-map. I f  X is a Frgchet 
space with a point-countable cs-network, then Y is a sequential (Fr~chet) space with a 

point-countable cs*-network. 

Proof. Since f is a quotient (pseudo-open) map, Y is a sequential (Fr6chet) space. Let 79 
be a point-countable cs-network for the space X. For each ff c Y, let Dy be a countable 
dense subset of f - l ( y ) .  Put 

D = U { D y :  y E r }  and . T = { f ( P N D ) :  P E 7 9 } ,  

then D is dense in X and .f" is a point-countable cover of Y. We shall show that ~" is a 
cs*-network for Y. 

Suppose a sequence {Yn} in Y converges to a point y, and let U be a neighborhood of 
y in Y. We assume that all y,~'s are distinct. Put A = {yn: n E 1~} \ {y}, then A is not 
closed in Y, and f -1  (A) is not closed in X, so there exists x e c l ( / -1  (A)) \ f - 1  (A) - 
c l ( f  -1 (A) N D) \ f - I  (A). By the Fr6chet property of X, there are a subsequence {yn~} 
of {Yn} and xi e f - l ( y ~ )  n O  with xi ~ x in X, thus x C f - l ( y ) ,  and there is a 
sequence {x~} in Dy with z~ --+ x in X, hence {x} U {xi, x~: i >~ m}  C P C f - l ( U )  

for some m e 1~ and some P E 79, so {y} U {Yn,: i >~ m} C f ( P  A D) C U, and 5 r is 
a point-countable cs*-network for Y. [] 

Remark 3.2. (1) A sequential space with a point-countable cs*-network may not be 
preserved by pseudo-open s-maps [5, Example 9.8]. 

(2) A space with a point-countable cs-network may not be preserved by perfect maps 
[20, p. 160]. 

Lemma 3.3 [8]. Let f : X --+ Y be a closed map, and let each point of X be a G6-set. 
(1) If  X has a point-countable k-network, then so has Y.  

(2) If  sequence {Xn} in X satisfies that {f(x ,0}  converges in Y and all f (xn) ' s  are 
distinct, then {xn} has a convergent subsequence in X .  

Theorem 3.4. Let f : X --+ Y be a closed map, and let each point of X be a G~-set. If  
X has a point-countable cs-network, then f is compact-covering. 

Proof. Since each point of X is a G~-set, each compact subset of X is first countable. 
By Lemma 1.2, every point-countable cs-network of X is a k-network. By Lemma 3.3, 
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Y has a point-countable k-network, so each compact subset of Y is metrizable. Let K 
be compact in Y, then K has a countable dense subset D. For each y E D, take a 
point xu E f - 1  (y). Put E = {xu: y E D}, then each sequence in E has a convergent 

subsequence in X by Lemma 3.3. If  a point x E cl(E), take a sequence {Gn} of open 

subsets of X such that cl(Gn+l) c Gn and {x} = Aner~ Gn, then there is a point 
xn  E E n Gn for each n E N. Since each subsequence of {x~} has a cluster point in X 

and x is the unique cluster point of {x,~}, sequence {z,~} converges to x. 
Now, let 79 be a point-countable cs-network for X,  and put 

79' = { P  f) cl(E): P E 7 9 , Pf-I E -¢ 0}, 

then 7 9' is a countable network for the subspace cl(E). In fact, for each x E cl(E), let 

U be open in X with z E U, then there exists a sequence {Xn}  in E such that zn --+ x 

in X, thus {z} U {zn: n />  m} C P C U for some m E N and some P ~ 79, therefore 
P A E ¢ 0 and x E P A cl(E) C U N cl(E), and 79' is a countable network for cl(E). 

This shows that cl(E) is paracompact. Since f (c l (E))  = K, flcl(E~ :cl(E) ~ K is a 
closed map, and it is a compact-covering map, hence there is a compact subset L of 

cl(E) with f ( L )  = K ,  and f is compact-covering. [] 

The authors thank the referee for the following suggestions related to Theorem 3.4. 
(1) The theorem remains valid if cs-network is replaced by k-network (or cs*-network). 

The only change in the proof is another definition of the family 79q 

7 9 ' = { c 1 ( P )  Ncl(E):  P E T  9 , P N E ¢ I ~ } .  

By the same method as in the proof of theorem one can show that such P~ is a countable 

network for cl(E). 

(2) Let ¢* be the well known Mrowka's space. Then taking f : ~b* --+ S where f maps 
all the nonisolated points of ¢* into a single point one obtains a closed mapping of a 

regular first countable space onto a convergent sequence which is not compact-covering. 

This demonstrates that the point-countable cs-network is essential. 
(3) (A well known Frolik's construction.) Let 73 = {D: D c w is infinite}. For any 

D E 73 choose x D E /~cO\02 such that x D  E cl(D). Then take X = a;U{ZD: D E 73} C 
/3co. Finally let f : X --+ S map all the nonisolated points of X into a single point. Then 
f is a closed noncompact-covering map of a regular space X in which every compact 

subspace is finite onto the convergent sequence. Thus the condition that every point is 
Ga is essential. 
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