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Abstract

In this paper we discuss three questions about the quotient s-images of metric spaces. The main
results are:

(1) X is a sequential space with a point-countable cs-network if and only if X is a compact-
covering, sequence-covering, quotient and s-image of a metric space.

(2) Let X and Y be sequential spaces with point-countable cs-networks, then X x Y is a k-space
if and only if one of the three properties below holds.

(a) X and Y are first countable spaces.

(b) X or Y is a locally compact space.

(¢) X and Y are local k,,-spaces.

(3) Let f: X — Y be a pseudo-open s-map. If X is a Fréchet space with a point-countable
cs-network, then Y is a Fréchet space with a point-countable cs*-network.

They partly answer three questions posed by Michael and Nagami (1973), Tanaka (1983), and
Gruenhage, Michael and Tanaka (1984) respectively.
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0. Introduction

Since generalized metric spaces determined by point-countable covers were discussed
by Burke and Michael in [2] and Gruenhage, Michael and Tanaka in [5], point-countable
covers have drawn attention in general topology. Partly, that is because point-countable

* Corresponding author. Department of Mathematics, Tokyo Gakugei University, Koganei, Tokyo, Japan.
Supported by NNSF of China.
1 Supported by NSF of Fujian Province, China.

0166-8641/96/$15.00 Copyright © 1996 Elsevier Science B.V. All rights reserved
PII 50166-8641(96)00043-0



52 S. Lin, C. Liu / Topology and its Applications 74 (1996) 51-60

covers are closely related to spaces with point-countable bases, and quotient s-images of
metric spaces. The problem posed by Arhangel’skii in [1] about the quotient s-images of
metric spaces is answered affirmatively by Tanaka in [19].

Lemma 0.1. A space X is a quotient (pseudo-open) s-image of a metric space if and
only if X is a sequential (Fréchet) space with a point-countable cs*-network.

Though Arhangel’skii’s problem is answered, point-countable covers and related ques-
tions are noticeable. For example:

Michael-Nagami’s question [13]. If a space X is a quotient s-image of a metric space,
must X also be a compact-covering quotient s-image of a metric space?

Tanaka’s question [18]. For quotient s-images X and Y of metric spaces, what is a
necessary and sufficient condition for X x Y to be a k-space?

Gruenhage-Michael-Tanaka’s question [5]. Are pseudo-open s-images of metric
spaces preserved by pseudo-open s-maps? By perfect maps?

By Lemma 0.1 the above three questions can recount three equivalent questions by
cs*-networks. In this paper we shall establish three similar theorems by means of the
concept of cs-networks, which partly answer the three questions mentioned above.

We recall some basic definitions.

Definition 0.2, Let X be a space, and let P be a cover of X.

(1) P is a network if, whenever z € U with U open in X, then z € P C U for some
P ¢ P. A subfamily P’ of P is a network at z € X if z € (P’ and whenever z € U
with U open in X, then P C U for some P € P'.

(2) P is acs-network [6] if, whenever {z,,} is a sequence converging to a point z € X
and U is a neighborhood of z, then {z} U {z,: n > m} C P C U for some m € N and
some P € P.

(3) P is a cs*-network [3] if, whenever {z,} is a sequence converging to a point
z € X and U is a neighborhood of z, then {z} U {z,,: 1 € N} ¢ P C U for some
subsequence {z,,} of {z,} and some P € P.

(4) P is a k-network [14] if, whenever K C U with U open and K compact in X,
then K c [P’ C U for some finite P’ C P.

Definition 0.3. Let f: X — Y be a map.

(1) f is an s-map if every f~!(y) is separable for each y € Y.

(2) f is a compact-covering map [9] if each compact subset of Y is the image of a
some compact subset of X.

(3) f is a sequence-covering map [5] if each convergent sequence of Y is the image
of some convergent sequence of X .
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There is a different definition of a sequence-covering map in [5], namely it requires
that each convergent sequence of Y be the image of some compact subset of X. In [5]
it is shown that a space X is a quotient s-image of a metric space if and only if X is a
sequence-covering quotient s-image of a metric space.

We assume that spaces are regular and 77, and maps are continuous and onto.

1. On Michael-Nagami’s question

Michael-Nagami’s question is whether a sequential space with a point-countable cs*-
network is a compact-covering quotient s-image of a metric space by Lemma 0.1. The
main result of this section is that a sequential space with a point-countable cs-network
is a compact-covering quotient s-image of a metric space. First of all, we characterize a
space with a point-countable cs-network by maps.

Theorem 1.1. A space X has a point-countable cs-network if and only if X is a
sequence-covering s-image of a metric space.

Proof. Let X be a space with a point-countable cs-network P. Suppose P is closed
under finite intersections. Denote P by {P,: a € A}. Let A; denote the set A with
discrete topology for each i € N. Put

M = {ﬂ = (ay) € HAi: {Ps;: it € N} is a network at some point
€N

z(3) in X},

then M is a metric space, and f: M € X defined by f(8) = z(0) is a function. It is easy
to check that f is an s-map from M onto X . We shall show that f is a sequence-covering
map. For a sequence {z,} of X converging to a point zg in X, we assume that all x,,’s
are distinct. Let K = {z,,: m € w}, and let K C U with U open in X, a subset F of
P is said to have the property F(K,U) if F satisfies that

(1) F is finite;

2) 8# PnK c PcU foreach P € F;

(3) for each z € K there is a unique P, € F with x € P,;

(4) if zg € P € F, then K \ P is finite.

Put

{F C P: F has the property F(K,X)} = {F;: i € N},

for each ¢ € N and each m € w there is a;m € A; with z,, € P,,, € F,. It can be
checked that {P,,,,: ¢ € N} is a network at the point z,,. Let 8, = (@) for each
m € w, then B,, € M and f(Bn) = Zpm. For each i € N, there is n(1) € N such that
@in = ago if 7 2 n(i), thus the sequence {a;, } converges to g in A;, and the sequence

{Br} converges to By in M. This shows that f is a sequence-covering map.
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Conversely, suppose that f: M — X is a sequence-covering s-map, where M is a
metric space. Let B be a o-locally finite base for M, then {f(B): B € B} is a point-
countable cs-network for the space X. O

Lemma 1.2, Let P be a point-countable cs-network for a space X. If t € K "W with
W open and K compact, first countable in X, then z € intgx(PNK) C P C W for
some P € P.

Proof. Let {V,,: n € N} be a local base at the point z in K. Put
F={PnK: PeP,and PCWor PC X\ {z}},
F'={F € F: V, CF for some n € N},

then F is a point-countable cs-network for the subspace K, and F’ is a neighborhood
base at = in K by the proof of Lemma 7(3) in [8], thus z € intg (F) ¢ KN'W for some
FeF,ie,forsome PePzeing(PNKYCc PCW. O

Let P be a family of subsets of X, and let K C X, denote that
(PIK)° = {intg (PN K): PP},
(PIK)"™ = {clg(intg (PN K)): PeP}.
Let P and @ be families of subsets of X, denote that
PAQ={PNQ: PcPandQc Q},
P < Q if for each P € P there is @ € Q such that P € Q.
Lemma 1.3. A space X is a compact-covering, sequence-covering and s-image of a

metric space if and only if X has a point-countable cs-network and each compact subset
of X is metrizable.

Proof. The “only if” part is clear, so we only need to prove the “if”” part. By Theorem 1.1,
there are a metric space M and a sequence-covering and s-map f: M — X. We use the
same notations as in the proof of Theorem 1.1, and show that f is a compact-covering
map. Let K be compact in X, then K is metrizable and (P|K )0 1s a countable base for
the subspace K by Lemma 1.2. Put

H={PeP:ing(PNK)#0},
then H is countable. Let

{#' cH: A s finite and | J (1K) = K} = [Hy: ke N},
then for each n,m € N there is ¥ € N such that Hy < H,, AH,,,. We assert that for each
i € N there is j € N such that (’Hj|K)0“ < (H:|K)°. In fact, for each z € K, therc are

H € H,;, an open set G in K and Q € H such that = € intg (QNK) C G C clg(G) C
intgx (H N K), thus clg (intg (Q N K)) C intg (H N K). By the compactness of K, we
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have a 7 € N with (Hj|K)0_ < (Hs|K)". Take a subsequence {L;} of {Hy} satisfying
that £; < H; and (£;41 |K)0_ < (£1'|K)0 for each ¢ € N, then there is a finite B; C A;
with £; = {P,: « € B;}. Put

L= {ﬁ = (o) € HBi: 0 # clg (intg (Pa,,, N K)) C intg (Po, N K)
ieN

for each 7 € N},

then L is closed in [];.y Bi, and L is compact in [ [,y Bi.

For each 8 = (o;) € L, take a point = € (,cyintg (Pa; N K). If W is open in X
with £ € W, then z € intg (PN K) C P C W for some P € P, and there exists a finite
H' C H such that

K\intg(PNK) C | J#HK)’ c|JH ¢ X\ {z}

because K \ intg (P N K) is compact, thus H; = H' U {P} for some i € N, hence
z € P, CPCW,ie, {Py: i€ N}is a network at the point z, so § € M and
f(8) = z, therefore L € M and f(L) C K.

On the other hand, for each z € K and each ¢ € N, put

U; = {U e (L;|K)": zeUY,

then U; is finite and nonempty. If V' € U, 1, there exists U € U; with clg (V) C U. By
the Kénig Lemma [7], there exists an (o) € [[;cy B: with clg(intg (Po,,, N K)) C
intg (P, N K) € U; for each i € N, hence (o;) € L and z € [,y intg (P, N K), and
{Pa;: 1 € N} is anetwork at z in X, ie., f((a;)) =z, s0 f(L) D K.

In a word, L is compact in M and f(L) = K, hence f is compact-covering. O

Theorem 1.4. The following are equivalent for a space X.

(1) X is a compact-covering, sequence-covering, quotient and s-image of a metric
space.

(2) X is a sequence-covering, quotient and s-image of a metric space.

(3) X is a sequential space with a point-countable cs-network.

Proof. It suffices to prove that (3) = (1). Let X be a sequential space with a point-
countable cs-network. By Lemma 0.1, X is a quotient s-image of a metric space, thus
every compact subset of X is metrizable by [5, Theorem 3.3]. By Lemma 1.3, if there are
a metric space M and a compact-covering, sequence-covering and s-map f: M — X,
then f is also quotient. O

Remark 1.5. (1) SN is a compact space with a point-countable cs-network, but it is not
metrizable.

(2) The subspace NU {p} (p € BN\ N} of AN has a point-countable cs-network, and
each compact subset is metrizable, but it is not sequential.

(3) There is a compact-covering, quotient and s-image of a metric space such that it
is not a space with a point-countable cs-network by Remark 14(2) in [8].
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2. On Tanaka’s question

Michael, Gruenhage and Tanaka have made an attentive study for products of k-spaces
[18), and obtained some beautiful results.

Definition 2.1. Let X be a space.

(1) X is a k,-space [11] if X has the weak topology with respect to a covering of
countable many compact subsets of X.

(2) X is an Ng-space [10] if X has a countable cs-network.

Lemma 2.2 [18]. Let X and Y be k and Wo-spaces, then X x Y is a k-space if and
only if one of the three properties below holds.

(1) X and Y are first countable spaces.

(2) X orY is a locally compact space.

(3) X and Y are local k,,-spaces.

For convenience’s sake, a pair (X,Y) of spaces X and Y is said to have Tanaka’s
condition, if one of the three properties in Lemma 2.2 holds.

Conjecture 2.3 (Tanaka, 1994). For the quotient s-images X, Y of metric spaces, X xY
is a k-space if and only if the pair (X,Y) has Tanaka’s condition.

The main results of this section are to prove that Tanaka’s conjecture holds in the spaces
with point-countable cs-networks, and to construct an example to show that Tanaka’s
conjecture does not hold under the set-theoretic hypothesis BF (w; ).

Theorem 2.4. Let X and Y be sequential spaces with point-countable cs-networks, then
X XY is a k-space if and only if the pair (X,Y') has Tanaka’s condition.

Proof. If the pair (X,Y’) of spaces X and Y has Tanaka’s condition, then X x Y is a
k-space [18]. Conversely, suppose X X Y is a k-space, by Theorem 4.2 in [16], then the
following condition (C,) or (Cy) holds.

(C)) For each decreasing sequence {4,,} of subsets of X, if a point z € cl(A, \ {z})
for each n € N, then there exists a nonclosed subset {an: n € N} of X with each
an € An.

(C2) If {By: n € N} is a decreasing network at some point in Y, then some cl(B,,)
is countably compact.

By [12, Theorem 9.5], Lemma 0.1 and the condition (C;), X is a countably bi-quotient
s-image of a metric space, thus X has a point-countable base. By the condition (Cy), Y
has a point-countable cs-network consisting of separable metrizable subspaces.

By the symmetry of spaces X and Y, to prove that the pair (X,Y) has Tanaka’s
condition, it suffices to discuss the following two cases.

Case 1: X has a point-countable base and Y has a point-countable cs-network consist-
ing of separable metrizable subspaces. Since Y is sequential, Y has the weak topology
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with respect to the cs-network for Y. If Y contains no closed copy of the sequential fan
S and no closed copy of the Arens’ space S, then Y is metrizable by Theorem 4.6 in
[17]. If Y contains a closed copy of S, or S, then X x S, is a k-space because S, is
a perfect image of Sy, thus X is locally compact by [4, Lemma 3 and 4].

Case 2: X and Y have point-countable cs-networks consisting of separable metriz-
able subspaces. First of all, we assert that X and Y are local Np-spaces. Let P be a
point-countable cs-network consisting of separable metric subspaces, and let D(P) be a
countable dense subset of P for each P € P. For each a € X, put

Pr={PeP:acP}, D =[J{DP): PcP]},
and for each n > 2 inductively define that
Pn={PeP: PNDy#0}, Dp=|J{D(P): PeP,}.

Let P’ = UpenPny» U = UP'. If {2} is a sequence in X converging to a point
in U and W is a neighborhood of x in X, then x € P for some m € N and some
P € Py, and there is a sequence {z,} in D(P) with z,, — z in P, thus {z} U
{Zn, 2l n 2 k} C Q C W for some k € N and some Q € P, so Q € P41 and
{z}U{z,: n 2k} C Q C UNW. This shows that U is a sequentially open subset of
X and P’ is a countable cs-network for the subspace U of X. Since X is a sequential
space, U is open in X, hence X is a local Rg-space. By the same reason, Y is also a
local Ro-space. Now, by Lemma 2.2, the pair (X,Y") has the Tanaka’s condition. O

Let “w be the set of all functions from w into w. For two functions f and g in “w
we define f < g if and only if the set {n € w: f(n) > g(n)} is finite. BF(w,) is the
following assertion.

BF(w;): If F' C “w has cardinality less than w;, then there exists g € “w such that
f<gforal feF.

It is known that CH implies that BF(w;) is false.

Lemma 2.5 [4]. The following are equivalent:
(1) BF(wy) holds.
(2) S x S, is a k-space.

Theorem 2.6. Under BF(w,), Tanaka’s conjecture does not hold.

Proof. Let X be the Arens’ space Sz, then X is a quotient s-image of a locally compact
metric space. Let I; be a subset of the unit interval [0, 1] with cardinality w;. Let Z be the
topological sum of [0, 1] and the collection {S(z): = € I;} of wy convergent sequences
S(z), then Z is a locally compact metric space. Let Y be the space obtained from Z by
identifying the limit point of S(z) with z for each z € Ij, then Y is a quotient s-image
of a locally compact metric space.

Under BF(w»), by Lemma 2.5, S, x S,, is a k-space. Since S,, is a perfect image of
52, X x S, is a k-space. Let H be the space obtained from Y by identifying [0, 1] to a
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single point, then H is homeomorphic to S, and a perfect image of Y, hence X x Y
is a k-space. It is easy to see that the pair (X, Y) does not have Tanaka’s condition. O

3. On Gruenhage-Michael-Tanaka’s question

This question is whether every Fréchet space with a point-countable cs*-network is
preserved by pseudo-open s-maps or perfect maps.

Theorem 3.1. Let f: X € Y be a quotient (pseudo-open) s-map. If X is a Fréchet
space with a point-countable cs-network, then Y is a sequential (Fréchet) space with a
point-countable cs*-network.

Proof. Since f is a quotient (pseudo-open) map, Y is a sequential (Fréchet) space. Let P
be a point-countable cs-network for the space X. For each y € Y, let D, be a countable
dense subset of f~!(y). Put

D:U{Dy: yGY} and ]—":{f(PﬁD) PE’P}a

then D is dense in X and JF is a point-countable cover of Y. We shall show that F is a
cs*-network for Y.

Suppose a sequence {y, } in ¥ converges to a point y, and let U be a neighborhood of
y in Y. We assume that all y,,’s are distinct. Put A = {y,: n € N} \ {y}, then A is not
closed in Y, and f~!(A) is not closed in X, so there exists z € cl(f~'(A))\ f~1(A4) =
c(f~1(A) N D)\ f~1(A). By the Fréchet property of X, there are a subsequence {yn, }
of {yn} and z; € fYyn,) N D with z; — z in X, thus € f~'(y), and there is a
sequence {z}} in D, with z; — z in X, hence {z} U {z;,2: i >m} C P C f~Y(U)
for some m € N and some P € P, so {y} U {yn,: i 2m} C f(PND)C U, and F is
a point-countable cs*-network for Y. O

Remark 3.2. (1) A sequential space with a point-countable cs*-network may not be
preserved by pseudo-open s-maps [5, Example 9.8].

(2) A space with a point-countable cs-network may not be preserved by perfect maps
[20, p. 160].

Lemma 3.3 [8]. Let f: X — Y be a closed map, and let each point of X be a Gs-set.
(1) If X has a point-countable k-network, then so has Y.
(2) If sequence {z,} in X satisfies that {f(zn)} converges in Y and all f(z,)’s are
distinct, then {x,} has a convergent subsequence in X.

Theorem 3.4. Let f: X — Y be a closed map, and let each point of X be a Gs-set. If
X has a point-countable cs-network, then f is compact-covering.

Proof. Since each point of X is a Gs-set, each compact subset of X is first countable.
By Lemma 1.2, every point-countable cs-network of X is a k-network. By Lemma 3.3,
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Y has a point-countable k-network, so each compact subset of Y is metrizable. Let K
be compact in Y, then K has a countable dense subset D. For each y € D, take a
point z, € f~!(y). Put E = {z,: y € D}, then each sequence in F has a convergent
subsequence in X by Lemma 3.3. If a point z € cl(E), take a sequence {G,} of open
subsets of X such that cl(Gp41) C Gn and {z} = ﬂneN Gy, then there is a point
zn € ENG, for each n € N. Since each subsequence of {z,} has a cluster point in X
and z is the unique cluster point of {z,}, sequence {z,} converges to x.
Now, let P be a point-countable cs-network for X, and put

P'={PNcl(E): PeP, PNE#0},

then P’ is a countable network for the subspace cl(E). In fact, for each z € cl(E), let
U be open in X with z € U, then there exists a sequence {z,,} in E such that z, — z
in X, thus {z}U{z,: n 2 m} C P C U for some m € N and some P € P, therefore
PNE #0and z € PNcl(E) C UNcl(E), and P’ is a countable network for cl(E).
This shows that cI(E) is paracompact. Since f(cl(E)) = K, flym):cl(E) - K is a
closed map, and it is a compact-covering map, hence there is a compact subset L of
cl(E) with f(L) = K, and f is compact-covering. O

The authors thank the referee for the following suggestions related to Theorem 3.4.
(1) The theorem remains valid if cs-network is replaced by k-network (or cs*-network).
The only change in the proof is another definition of the family P’:

P = {cl(P)Ncl(E): PeP, PNE # 0}.

By the same method as in the proof of theorem one can show that such P’ is a countable
network for cl(E).

(2) Let v* be the well known Mrowka's space. Then taking f:1¥* — S where f maps
all the nonisolated points of %* into a single point one obtains a closed mapping of a
regular first countable space onto a convergent sequence which is not compact-covering.
This demonstrates that the point-countable cs-network is essential.

(3) (A well known Frolik’s construction.} Let D = {D: D C w is infinite}. For any
D € D choose xp € fw\w such that xD € cl(D). Then take X = wU{zp: D € D} C
Pw. Finally let f: X — S map all the nonisolated points of X into a single point. Then
f is a closed noncompact-covering map of a regular space X in which every compact
subspace is finite onto the convergent sequence. Thus the condition that every point is
G 1s essential.
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