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In this paper it is shown that a Hausdorff space Y is a strongly compact-covering quotient
s-image of a metric space if and only if V is a sequential space with a poiat-conntable cs-

network, which is a partial answer to the Michael-Nagami problem.
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In 1973, Michael and Nagamil!? posed a problem: If a space X is a quotient s-image of a
metric space, must X also be a compact-covering quotient s-image of a metric space? It interests
many research workers in general topology as a classic open problem [1:3:31L14]  Some related
results are

Theorem A!'2l, The following are equivlent for a T, space Y

(1) Y is an open s-image of a metric space;

(2) Y is a compact-covering open s-image of a metric space;

(3) Y has a point-countable base. |

Theorem B{31!4, The following are equivalent for a T, space Y

(1) Y 1s a quotient s-irnage of a metric space;

(2} Y Is a sequence-covering quotient s-image of a metric space;
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(3) Y 1s a sequential space with a point-countableics™-network.

These show that a study of certain point-countable covers for a space will be a key to answer
the Michael-Nagami problem. In this paper we discuss spaces with a point-countable cs-network.
and prove that a sequential space with a point-countable cs-network 1s a strongly compact-
covering quotient s-image of a metric space, which not only deepens Theorem A. but also gives
a new way to solve the Michael-Nagami problem.

In this paper all spaces are T, maps are continuous and onto, N denotes the set of all natural
numbers and w = {0} U N. We recall some basic definitions.

Definition 1. Let f: X — Y be a map.

(1) f is an s-map if each f~'(y) has a countable base in X.

(2) f 1s a compact-covering map [10] if each compact subset of Y is the image of some compact
subset of X.

(3) f is a sequence-covering map 3 if each convergent sequence of Y is the image of some
compact subset of X. |

(4) f is a strongly sequence-covering map 13! if each convergent sequence of Y is the image
of convergent sequence of X.

(0) f is a strongly compact-covering map if f 1s a strongly sequence-covering map and a
compact-covering map.

Obviously,

compact-covering map
strongly compact-covering map = { strongly sequence- 3 => sequence-covering map.
covering map

Definition 2. Let X be a space, and let P be a cover of X.

(1) P is a network if, whenever £ € U with U open in X, then £ € P C U for some P € P.

(2) P is a cs-network 4 if, whenever {z,} is a sequence converging to a point z in X and
U is a neighborhood of z in X, then {z} U{z, : n > m} C P C U-for some m € N and some
PeP. -

(3) P is a cs*-network (2! if, whenever {z,} is a sequence converging to a point z in X and
U is a neighborhood of z in X, then {z}U{z,, :1 € N} C P C U for some subsequence {z,,}
of {,} and some P& P. | ' '

Theorem 1. A space Y is a strongly sequence-covering s-image of a metric space if and only
if Y has a point-countable cs-network. |

Proof. Suppose a space Y is a strongly sequence-covering s-image of a metric space, then
there exist a metric space X and a strongly sequence-covering s-map f; X — Y. Let B be a
o-locally finite base for X. Then {f(B) : B € B} is a point-countable cs-network for the space
Y. _

Conversely, suppose Y has a point-countable c¢s-network P. We can assume that P is closed
under finite intersections. Denote P by {P, : « € A}. Let A; denote the set 4 with discrete
topology for each : € N. Put

X = {ﬁ = (ay) € H A; i {pa; : i € N} is a network at some point y(3) inY}.
€N

Then X is a metric space, and f : X — Y defined by f(8) = y(/7) is a function. It is easy to
check that f is an s-map from X onto Y1), We shall show that f is a strongly sequence-covering
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map. For a sequence {y,} converging to a point yg in Y, we assume that all y/ s are distinct.
Let K = {yn, : m € w}, and let K’ C U with Uopen in y. A subset F of P is said to have the
property F(K,U) if F satisfies that

(1) F if finite; - ,

(2)0#£ PNK C P CU for each P € F;

(3) there is the only P, € F with z € P, for each z € K;

(4) if yo € P € F, then K\P is finite.
Put

{F C P : F has the property F(K,X)} ={F;:i€ N}.

For each : € N and m € w there 1s o4, € A; with y,,, € P, € F;. Let

Ty = (aim) - H A;.

tE€N

[t can be checked that {P,,, :7€ N} is a network at y,, in Y, thus z,, € X and f(z;n) = ym
for each m € w. For each i € N, there is n(z) € N so that a;, = a;, for all n > n(7), thus the
sequence {a;, } converges to a;, in A;, and the sequence {z,} converges to z3 in X. This shows
that f 1s a strongly sequence-covering map, and completes the proof of the Theorem.

Now, we give a characterization of the strongly compact-covering s-image of a metric space.

Lemma. Let P be a point-countable cs-network for a space Y. If y € K N W with W open
and K compact, first countable in Y, then y €intxg (PN K) C P C W for some P € P.

Proof. Let {V,, : n € N} be a local base at the point y in K. Put

F={PNK:PeP,and PC Wor PCY\{y}),
F'={Fe€eF:V, CFforsomene&N}.

Then F 1s a point-countable cs-network for the subspace K, and F’ is a neighborhood base at
y in K by the proof of Lemma 7(3) in [9], thus y €intg(F) C KNW for some F € F,ie., y €
mtg(PNK)C PC W for some P € P.

Let P be a family of subsets of a space Y, and let K C Y. Denote that

(P|IK)° = {intg(PNK): P e P}
(PIK)°~ = {cl(intxg (PN K)) : P € P}.

Theorem 2. A space Y is a strongly compact-covering s-image of a metric space if and
only if Y has a point-countable cs-network and each compact subset of Y is metrizable.

Proof. The “if” part is clear, so we only need to prove the “only if ” part. By Theorem 1.
there exist a metric space X and a strongly sequence-covering s-map f : X — Y. We still use
the same notations in the proof of Theorem 1, and show that f is a compact-covering map. Let
K be compact in Y, then K is metrizable and (P|K)" is a countable base for the subspace K
by Lemma. Put

H={PeP:intg(PNK) # ¢}.
Then M i1s countable. Let

{H'CH:H isfiniteand U(H'|K)’ =K} ={Hr: k€ N}.



14 " Lin. S.

Then for each n,m € N thereis k € N such that
Hi < Hn AHp,.
We assert that for each 2 € N there 1s 7 € N such that
(M;1K)"™ < (Hi|K)°.
In fact, for each y € K, there are H € 'H;, an open subset G in K and () € ‘H such that
y €intg(QNK)C G C clg(G) C intgx(H N K),

thus
clg(intg (QNK)) Cmmtg(H N K).

By the compactness of K, (H;|K)"~ < (H;|K)° for some j € N. Take a subsequence {L;} of
{H,} satisfying that

L; < H; and (ﬁi.{.l[[{)ﬂ_ < (ﬁiuf)ﬂ for each 1 € N.

Then there is a finite B; C A; with £; = {P, : a € B;}.
Put

L= {/3 = (a:) € [] Bi : ¢ # cl(intx (Pa,,, N K)) C int(Pa, N K) for each i € N |
teN

Then L is closed in [] B;, and L is compact in [] B;.
€N teN
For each § = («;) € L, take a point y € () intg(Pa, N K). If W isopenin Y with y e W,
€N |
then, by Lemma, y € intx (PN K) C P C W for some P € P, and

K\intx (P N K) C UH'|K)® C UK’ C Y\{y}

for some finite H' C H because K\ intx (PN K) is compact, thus H; = H'U{P} for some 1 € NV,
hence y € P,, CPC W,ie., {P, :1 € N} 1s a network at the point y in Y, so § € X and
f(B) =y, therefore L C X and f(L) C K.

On the other hand, for each y € K and each : € V, put

U; = {U € (Li]K) :y e U}.
Then U; is finite and non-empty. If V € U;41, there exists U € U; with clg (V) C U. By Konig
Lemmal® Lemma 374] "there exists (a;) € [[ B; with
€N

clg(intg (Pa,,, N K)) Cintg(Pa; N K) € U,

for each : € N, hence (a;) € L and

y € () intx(Pa; N K),
teEN



A NOTE ON MICHAEL-NAGAMI'S PROBLEM 15

and {P, 1€ N}isanetwork at yin Y i.e., f((e;)) =y, so f(L) D K.

In a word, L 1s compact in X and f(L) = K, hance f is compact-covering.

Theorem 3. The following are equivalent for a space Y;

(1) Y 1s a strongly sequence-covering quotient s-image of a metric space:

(2) Y is a strongly compact-covering quotient s-image of a metric space;

(3) Y is a sequential space with a point-countable cs-network.

Proof. It suffices to prove (3) = (2). Let Y be a sequential space with a point-countable
cs-network. By Theorem B, Y i1s a quotient s-image of a metric space, thus every compact
subset of ¥ 1s metrizable by Theorem 3.3 in {3]. By Theorem 2, there exist a metric space X
and a strongly compact-covering s-map f : X — Y, then f is also quotient by Lemma 45.8 In

6].

Remarks.

(1) BN 1s a compact space with a point-countable cs-network, but it is not metrizable.

(2) The subspace N U {p}{(p € BN\N) of BN has a point-countable cs-network, and each of
its compact subsets are metrizable, but it is not sequential.

(3) There is a compact-covering quotient s-image of a metric space such that it is not a space
with a point-countable cs-network by Remark 14(2) in [9].
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