CLOSED IMAGES OF LOCALLY COMPACT METRIC SPACES*

Lin Shou

(Ningde Normal College)

Abstract In this paper the main result is that a T_2 —space X has a σ —hereditarily closure—preserving compact k—network if and only if X has a σ —hereditarily closure—preserving closed k—network, and each closed metric subspace of X is locally compact. As its an application, we obtain a new characterization on closed images of locally compact metric spaces.

Keywords K—network, locally compact space, metric space, closed mapping.

A study on images of metric spaces is one of central questions on general topology. Every quotient image of a metric space is actually the quotient image of a locally compact metric space^[3]. However, every closed image of a metric space need not be the closed image of a locally compact metric space. A nice relation between closed images of metric spaces and closed images of locally compact metric spaces was established by Y. Tanaka in [8] as follows.

Theorem A A T_2 space X is a closed image of a locally compact metric space if and only if X is a closed image of a metric space, and each closed metric subspace of X is locally compact.

A characterization of closed images of mertic spaces was obtained by L. Foged in [2] as follows.

Theorem B A T_2 space X is a closed image of a metric space if and only if X is a Fréchet space with a σ -HCP closed k-network.

The purpose of this paper is to establish the further characterization on closed images of locally compact metric spaces. We prove that a T_2 space X has a σ -HCP compact k-network if and only if X has a σ -HCP closed k-network, and each closed metric subspace of X is locally compact. First, recall some definitions.

^{*} 收稿日期:1994一04一03;

Project supported by the Mathematics "Tian Yuan" Fund of NNSF of China and NSF of Fujian Province, China

In this paper, all spaces are T_2 , and all mappings are continuous and onto. N denotes the set of all natural numbers.

Definition 1 Let $f: X \to Y$, f is closed, if f(F) is closed in Y whenever F is closed in X; f is compact, if $f^{-1}(y)$ is compact in X whenever $y \in Y$; f is perfect, if f is closed and compact.

Definition 2 Suppose $\mathscr P$ is a family of subsets of a space X. $\mathscr P$ is a k-network for X, if whenever $K \subset U$ with K compact and U open in X, then $K \subset U\mathscr P' \subset U$ for some finite $\mathscr P'$ $\subset \mathscr P$. $\mathscr P$ is a closed (compact) k-network for X, if $\mathscr P$ is a k-network consisting of closed (compact) subsets of X.

Definition 3 Suppose $\mathscr P$ is a family of subsets of a space X. $\mathscr P$ is discrete (locally finite), if whenever $x \in X$, there exists an open neighborhood U of x in X that intersects at most one (finite) element of $\mathscr P$. $\mathscr P$ is HCP (i. e., hereditarily closure—preserving) if whenever $H(P) \subset P \in \mathscr P$, then $\bigcup \{\overline{H(P)}: P \in \mathscr P\} = \overline{\bigcup \{H(P): P \in \mathscr P\}}$.

Clearly, for a space,

discrete family-locally finite family-HCP family.

A σ—discrete (locally finite, HCP) family is a family that is the union of countably many discrete (locally finite, HCP) families.

Theorem A space X has a σ -HCP compact k-network if and only if X has a σ -HCP closed k-network, and each closed metric subspace of X is locally compact.

Proof Necessity. Suppose a space X has a σ —HCP compact k—network. Obviously, X has a σ —HCP closed k—network. If A is a closed metric subspace of X, then A has a σ —HCP compact k—network, thus there exists a paracompact, locally compact space Z and a closed mapping f from Z onto A by Theorem 2 in [5]. From paracompactness of Z and first countability of A, we can assume that f is perfect [6], then A is locally compact. Hence each closed metric subspace of X is locally compact.

Sufficiency. Suppose a space X has a σ -HCP closed k-network, and each closed metric subspace of X is locally compact. Let $\mathscr{P} = \bigcup_{n \in \mathbb{N}} \mathscr{P}_n$ be a closed k-network for X, where each \mathscr{P}_n is HCP in X, and $X \in \mathscr{P}_n \subset \mathscr{P}_{n+1}$. For each $n \in \mathbb{N}$, put

$$D_x = \{x \in X : \mathcal{P} \text{ is not point-finite at } x\},$$

$$\mathscr{R} = \{P \setminus D_n: P \in \mathscr{P}_n, n \in N\} \cup \{\{x\}: x \in D_n, n \in N\},$$

then, from the proof of Theorem in [4], we have the following facts:

- (1) D_{\bullet} is σ —discrete in X.
- (2) $K \cap D_{\bullet}$ is finite if K is compact in X.
- (3) For a finite $\mathscr{F} \subset \mathscr{R}$, there are $m \in N$, $P \in \mathscr{P}_m$ and $D \subset D_m$ such that $\bigcap \mathscr{F} = (P \setminus D_m) \cup D$.

Define

$$\mathscr{H} = \{R \in \mathscr{R} : \overline{R} \text{ is compact in } X\}.$$

 $\mathscr{H} = \{\overline{H} : H \in \mathscr{H} \}.$

Then, by (1), \mathcal{K} is a σ -HCP family of compact subsets of X, we shall prove that \mathcal{K} is a k-network for X.

For $K \subset U$ with K compact and U open in X, since \mathscr{R} is a point—countable cover of K, by a result of A. S. Miscenko in [7], there are only countably many minimal finite subfamilies of \mathscr{R} covering K, say $\{\mathscr{R}_i: i \in N\}$. For each $n \in N$, let $A_n = \bigcup (\bigwedge_{i \leqslant n} \mathscr{R}_i)$, then $\{\overline{A_n}\}$ is a descending sequence of closed subsets of X. If V is open in X with $K \subset V$, then $K \cup \mathscr{P}' \subset V$ for some finite $\mathscr{P}' \subset \mathscr{P}_i$.

Thus

$$K \subset (\bigcup \{P \setminus D_i, P \in \mathscr{P}'\}) \cup (K \cap D_i)$$

 $\subset (\bigcup \{\overline{P} \setminus \overline{D_i}, P \in \mathscr{P}'\}) \cup (K \cap D_i) \subset V.$

By (2), there is $n \in N$ such that

$$\mathscr{R}_{n} \subset \{P \setminus D_{i}; P \in \mathscr{P}'\} \cup \{\{x\}: x \in K \cap D_{i}\},$$

so $K \subset \overline{A_n} \subset V$, and $\{\overline{A_n}\}$ is a network of K in X. We assert that $\overline{A_n}$ is countably compact for some $n \in N$. In fact, if not, then for each $n \in N$, $\overline{A_n}$ has a countable subset B_n which is a closed discrete subspace in X. Put

$$B = K \cup (\bigcup_{n \in N} B_n),$$

then B is a closed metric subspace of $X^{[9]}$, and B is not locally compact, a contradiction. Hence there exists $n \in N$ such that $\overline{A_n} \subset U$ and $\overline{A_n}$ is countably compact. Since X is subparacompact, $\overline{A_n}$ is compact. Since A_n is a finite union of finite intersections of elements of \mathcal{R} , by (3), there are a finite $\mathcal{R}' \subset \mathcal{R}$ and some $D \subset D_m$ such that $A_n = (\bigcup \mathcal{R}') \bigcup D$. Put $\mathcal{R}' = \mathcal{R}' \bigcup \{\{x\}: x \in K \cap D\}$,

then \mathscr{H}' is a finite subfamily of \mathscr{H} and $K \subset U\{\overline{H}: H \in \mathscr{H}'\} \subset U$. Therefore, \mathscr{K} is a k- network for X, and X has a $\sigma-$ HCP compact k-network.

Corollary 1 The following properties are equivalent for a space X,

- (1) X has a σ —discrete compact k—network.
- (2) X has a σ -locally finite compact k-network.
- (3) X has a σ —discrete closed k—network, and each closed metric subspace of X is locally compact.
- (4) X has a σ -locally finite closed k-network, and each closed metric subspace of X is locally compact.

Proof By the proof of the above Theorem, we have that $(1) \Leftrightarrow (3)$ and $(2) \Leftrightarrow (4)$. By Theorem 4 in [1], we have that $(3) \Leftrightarrow (4)$.

Corollary 2 The following properties are equivalent for a space X,

- (1) X is a closed image of a locally compact metric space.
- (2) X is a closed image of a metric space, and each closed metric subspace of X is locally compact.
 - (3) X is a Fréchet space with a σ -HCP compact k-network.

(4) X is a Fréchet space with a σ -HCP closed k-network, and each closed metric subspace of X is locally compact.

References

- 1 Foged, L., Characterizations of \-spaces, Pacific J. Math., 110(1984), 59~63.
- 2 Foged, L., A characterization of closed images of metric spaces, Proc. Amer. Math. Soc., 95(1985), 487~490.
- 3 Franklin, S. P., Spaces in which sequences suffice, Fund. Math., 57(1965), 107~115.
- 4 Lin, S., A decomposition theorem for Σ^* —spaces, Topology Proceedings, 16(1991), 125~128.
- Lin, S., On the images of paracompact locally compact spaces, J. Math. (PRC) (in chinese), 12 (1992), 281~286.
- 6 Michael, E., A note on closed maps and compact sets, Israel J. Math., 2(1964), 173~176.
- 7 Miscenko, A. S., Spaces with a point countable base, Soviet Math. Dokl., 3(1962), 855~858.
- 8 Tanaka, Y., Closed images of locally compact spaces and Fréchet spaces, Topology Proceedings, 7 (1982), 279~292.
- 9 Tanaka, Y., Metrization II, in. K. Morita, J. Nagata Eds., Topics in General Topology (Elsevier Science Publishers B. V., 1989), 275~314.

局部緊度量空间的闭映象

林寿

(宁德师专,352100,福建)

摘 要 本文的主要结果是T。空间X具有 σ 遗传闭包保持的紧k网当且仅当X具有 σ 遗传闭包保持的闭k网并且X的每一闭度量子空间是局部紧。作为它的应用,我们建立了局部紧度量空间的闭映象的新特征。

关键词 人网,局部紧空间,度量空间,闭映射

分类号 54C10,54E99

THE STABILIZATION OF SEMIGROUP OF CLASS (1,A)

Xue Xingmei

(Southeast University)

Abstract Let S(t); $t \ge 0$ be a semigroup of class (1,A) in Banach space X, with infinitesimal generator A. In this paper we prove that; if either S(t) or $S^*(t)$ is strongly stable, yet not uniformly exponentially stable as $t \to +\infty$, then for any compact operator B on X, the semigroup $S^B(t)$ generated by A + B can't be uniformly exponentially stable as $t \to \infty$.

Keywords semigroup of class (1,A); strongly stable; uniformly exponentially stable

Let S(t), $t \ge 0$ be a semigroup in Banach space $(X, \| \cdot \|)$ and A be its infinitesimal generator. Let $B \in B(X)$, the Banach space of bounded linear operators on X, we denote by $S^B(t)$, $t \ge 0$, the semigroup generated by A + B, which corresponds with the abstract linear dynamic system:

$$x'(t) = Ax(t) + U$$

with U in feedback form U = Bx(t), whose solution is given by $x(t,x_0) = S^B(t)x_0$.

Feedback control problems of this type arise from control theoretic studies for linear dynamical systems, where an aim is to select the feedback operator B as to force $S^B(t)$ to posses asymptotic stability properties. Otherwise it can be used to discuss the positive solutions of the algebraic Riccatic equations (see[1]).

Definition 1 Let $S(t), t \ge 0$ be a semigroup of linear operators, it is a semigroup of class (1,A) if it satisfies:

1) for any
$$x \in X$$
, $t_0 > 0$, $\lim_{t \to t_0} S(t)x = S(t_0)x$,

2) for any
$$x \in X$$
, $\lim_{\lambda \to +\infty} \lambda R(\lambda) x = \lim_{\lambda \to +\infty} \lambda \int_0^\infty e^{\lambda t} S(t) x dt = x$, and
$$\int_0^1 ||S(t)|| dt < +\infty,$$

where $R(\lambda) = (\lambda I - A)^{-1}, \lambda \in \rho(A)$.

^{*} Research supported by the National Natural Science Foundation of China. 收稿日期:1994-05-05.