A NEW CHARACTERIZATION OF DEVELOPABLE SPACES*

Lin Shou

Liu Zhengshuai

Dept. of Math. Ningde Teachers' College

Dept. of Math. Henan Teachers' Univ.

Ningde, 352100

Xinxiang, 453002

Abstract In this paper we give a new characterization of developable spaces. As an application, we show that a first countable closed image of a developable space is developable.

Key Words developable space, closed mapping.

Class.: 54E30,54C10

The class of developable spaces, as a generalization of metric spees, has many important properties. Its mapping theorems have been provoking many mathematicians' interest. For example, Burke[1] proved that developability is preserved by perfect mappings. In this paper, we give a new characterization of developable spaces. As its an application, we show that a first countable closed image or an open and closed image of a developable space is developable.

In this paper, all spaces are T_1 and all mappings are continuous and onto. A space X is developable, if there exists a sequence $\{\mathcal{U}_n\}$ of open covers of X such that for each $x \in X$, $\{st(x, \mathcal{U}_n): n \in N\}$ is a base of neighborhoods of x in X. In order to state the characterization of developable spaces it will be necessary to define the idea of a pair-network and develop some companion notation.

A collection $\mathscr{P} = \{(Q_{\sigma}, R_{\sigma}) : \alpha \in \Lambda\}$ of pairs of subsets of a space X is called a pair-network for X if whenever $x \in W$, with W open in X, there is some $P = (Q_{\sigma}, R_{\sigma}) \in \mathscr{P}$ such that $x \in Q_{\sigma} \subset R_{\sigma} \subset W$. If \mathscr{P} is a pair-network for X and $P \in \mathscr{P}$ we let P' denote the first element in the pair P and P'' denote the second element. If $\mathscr{R} \subset \mathscr{P}$, let $\mathscr{R}' = \{P' : P \in \mathscr{R}\}$ and $\mathscr{R}' = \{P'' : P \in \mathscr{R}\}$. If $x \in X$ and $\mathscr{R} \subset \mathscr{P}$ let

$$st(x,\mathcal{R}) = \bigcup \{P'': P \in \mathcal{R}, x \in P'\},$$

and if $A \subseteq X$, then $st(A, \mathcal{R}) = \bigcup \{P'': P \in \mathcal{R}, A \cap P' \neq \emptyset\}$.

Burke[1] obtained the following theorem.

Theorem 1 The following properties of a space Y are equivalent:
(a) Y is developable.

^{*} Project Supported by the National Natural Science Foundation of China

- (b) Y has a pair-network $\mathscr{D} = \bigcup \mathscr{D}$, satisfying:
- (1) Each \mathscr{D}'_{\bullet} is a locally finite collection of closed sets and \mathscr{D}'_{\bullet} is a collection of open sets.
- (2) Whenever $C \subset U \subset Y$ where C is compact and U is open, there is some $n \in N$ such that $C \subset st(C, \mathcal{D}_{\bullet}) \subset U$.
 - (c) Y has a pari-network $\mathcal{R} = \bigcup \mathcal{R}$, satisfying:
 - (1) Each \mathcal{R}'_{\bullet} is a locally finite collection of closed sets.
 - (2) Whenever $y \in U \subset Y$ with U open, there is some $n \in N$ such that $y \in st^{\circ}(y, \mathcal{R}_{*}) \subset U$.

Let \mathscr{H} be a collection of subsets of a space X, \mathscr{H} is hereditarily closure-preserving, if whenever $P(H) \subset H \in \mathscr{H}$, then $\overline{\bigcup \{P(H): H \in \mathscr{H}\}} = \bigcup \{\overline{P(H)}: H \in \mathscr{H}\}.$

Lemma 2 Suppose Y is a first countable space. If \mathcal{H} is a hereditarily closure-preserving collection of closed subsets of Y, then

$$\{\overline{H\backslash D(\mathscr{H})}: H\in \mathscr{H}\} \cup \{\{y\}: y\in D(\mathscr{H})\}$$

is locally finite in Y, where

$$D(\mathcal{H}) = \{y \in Y : \mathcal{H} \text{ is not point-finite at } y\}.$$

Proof We first prove that $D(\mathcal{H})$ is discrete in Y. Otherwise, there exists a subset A of $D(\mathcal{H})$ such that A is not closed in Y. Take a $y \in cl(A) \setminus A$. Since Y is first countable, let $\{U_n : n \in N\}$ be a countable base of neighborhoods of y in Y, choose $y_n \in U_n \cap A$ such that all y_n' s are distinct, then sequence $\{y_n\}$ converges point y. Put $B = \{y_n : n \in N\}$. Then B is not closed in Y. On the other hand, for each $n \in N, y_n \in D(\mathcal{H})$, there exists a subcollection $\{H_n : n \in N\}$ of \mathcal{H} with $y_n \in H_n$, then B is closed in Y because \mathcal{H} is hereditarily closure-preserving, a contradiction. Hence $D(\mathcal{H})$ is discrete in Y.

Secondly, we prove that $\{\overline{H\backslash D(\mathscr{H})}: H\in \mathscr{H}\}$ is locally finite in Y. Otherwise, $\{\overline{H\backslash D(\mathscr{H})}: H\in \mathscr{H}\}$ is not point-finite because it is closure-preserving. There are a point $y\in Y$ and a countable subcollection $\{H_n:n\in N\}$ of \mathscr{H} such that $y\in\bigcap_{n\in N}\overline{H_n\backslash D(\mathscr{H})}$, thus $y\in\bigcap_{n\in N}H_n$, so $y\in D(\mathscr{H})$ and $y\in\bigcap_{n\in N}\overline{H_n\backslash \{y\}}$. Suppose $\{V_n:n\in N\}$ is a countable base of neighborhoods of y in Y, then $V_n\cap (H_n\backslash \{y\})$ is infinite for each $n\in N$. Choose $y_n\in V_n\cap (H_n\backslash \{y\})$ such that all y_n' s are distinct. Then sequence $\{y_n\}$ converges point y, and $\{y_n:n\in N\}$ is discrete in Y, a contratiction. This completes the proof of Lemma.

Theorem 3 A space Y is developable if and only if Y has a pair-network $\mathscr{P} = \bigcup_{x \in N} \mathscr{P}_x$ satisfying:

- (1) Each $\mathscr{D}_{\mathbf{x}}$ is hereditarily closure-preserving collection of closed sets of Y.
- (2) Whenever $y \in U \subset Y$ with U open, there is some $n \in N$ such that $y \in st^0(y, \mathscr{P}_*) \subset U$.

Proof It is sufficient to prove sufficiency. Suppose Y has a pair-network $\mathscr{P} = \bigcup_{n \in \mathbb{N}} \mathscr{P}_n$ satisfying the above condition (1) and (2). By (2), Y is first countable. For each $n \in \mathbb{N}$, let

$$\mathscr{R}_{\bullet} = \{ (\overline{P' \setminus D_{\bullet}}, P'') : P \in \mathscr{P}_{\bullet} \} \cup \{ (\{y\}, st(y, \mathscr{P}_{\bullet})) : y \in D_{\bullet} \},$$

where $D_* = \{y \in Y : \mathscr{P}'_* \text{ is not point-finite at } y\}$. By Lemma 2, \mathscr{R}'_* is a locally finite collection of closed subsets of Y, and for each $y \in Y$, $st(y, \mathscr{R}_*) = st(y, \mathscr{P}_*)$. Hence $\bigcup_{x \in N} \mathscr{R}_*$ is a pair-network of Y, and it

satisfies the condition (c) in Theorem 1. Therefore Y is a developable space.

Theorem 4 A first countable closed image of a developable space is developable.

Proof Suppose $f: X \to Y$ is a closed mapping, where X is a developable space, and Y is a first countable space. Then there exists a σ -closed discrete subspace Z of Y such that $f^{-1}(y)$ is compact in X for each $y \in Y \setminus Z$ by a Worrell's theorem [3] (cf. Corollary 1.1 in [2]). Denote Z by $\bigcup_{n \in N} Z_n$, where each Z_n is discrete in Y. For each $y \in Z$, let $\{U(y,n): n \in N\}$ be a countable base of neighborhoods of y in Y. Suppose $\bigcup_{n \in N} \mathscr{P}_n$ is a pair-network of developable space X, which satisfies the condition (b) in Theorem 1. For each $n, j \in N$, put

$$\mathcal{R}_{*,j} = \{(f(P'), f(P'')): P \in \mathcal{P}_{*,j}\},$$

$$\mathcal{H}_{*,j} = \{(\{y\}, U(y,j)): y \in Z_{*,j}\},$$

then $(\bigcup_{s,j\in N} \mathcal{R}_s) \cup (\bigcup_{s,j\in N} \mathcal{H}_{sj})$ is a pair-network of Y satisfying the condition (1) in Theorem 3. Whenever $y\in U$ with U open in Y, if $y\in Z$, then there are $n,j\in N$ such that $y\in Z_s$ and $U(y,j)\subset U$, thus $y\in st^0(y,\mathcal{H}_{sj})\subset st(y,\mathcal{H}_{sj})=U(y,j)\subset U$. If $y\in Y\setminus Z$, then $f^{-1}(y)$ is compact in X, hence $f^{-1}(y)\subset st(f^{-1}(y),\mathcal{P}_s)\subset f^{-1}(U)$ for some $n\in N$, so $y\in st^0(y,\mathcal{R}_s)\subset st(y,\mathcal{R}_s)\subset U$. By Theorem 3, Y is a developable space.

Corollary 5 An open and closed image of a developable space is developable.

References

- Burke, D. K., Preservation of certain base axioms under a perfect mappings, Topology Proceedings, 1(1976), 269 -279.
- [2] Chaber, J., Generalizations of Lasnev's theorem, Fund. Math., 119(1983), 85-91.
- [3] Worrell, J. M., Jr., On boundaries of elements of upper semicontinuous decompositions I, Notices AMS, 12 (1965), 219-220.

可展空间的一个新刻划

林 寿 刘正帅 宁德师专 河南师大

摘要 本文给出可展空间的一个新刻划。作为它的应用,我们证明可展空间的第一可数闭映象是可展空间。

关键词 可展空间,闭映射。

环与半群的自内射性

李方

东南大学数力系,南京210018

摘要 本文首先刻划了环与其直和分解项之间自内射性的联系。然后研究了半群环的自内射性。给出了半群环自内射性的一个必要条件,并且对某些逆半群和主因子均 c一非奇异的半群,刻划了其半群环的自内射性。最后,对半群环的 Dedekind 有限性进行了一些讨论。

关键词 环,半群环,自内射性,逆半群,Dedekind有限性

§ 1 环的自内射性

本文中没有解释的概念和符号,可参见[1]和[2]。

环R 称为左自内射的,如果 R 作为左 R 一模是内射模。本文中左自内射环一律简称自内射环。若环 R 既是左自射的 α 是右自内射的,则称为**双边自内射环**。

下述定理 1.1(Letami)及定理 1.3 在对半群环自内射性的研究中将是重要的。

定理 1.1[8] 对任何环 R 和正整数 n, R 是自内射环当且仅当全矩阵环 M.(R)是自内射环。

引理 1.2 对于环 R 的含幺理想 I(I 的幺元未必是 R 的幺元),若 I 的左理想均为 R 的左理想,那么当 R 是自内射环时,I 亦是自内射环。

由于 R 是自内射环,故对 f,存在 $g \in Hom_R(R,R)$ 使下图交换:

其中 η 是嵌入,左下标 R表示此图是作为左 R一模同态的交换图。由此,易见下图交换:

