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Abstract It is shown that a Hausdorff space is the sequence-covering s-image of a metric space if and

only if it has a point-countable cs *-network.
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In this paper, all spaces are assumed to be Hausdorff topological spaces and-all mappings are
continuous and surjective.

At Prague symposium on -tcpologyﬂin 1961, Alexandroff conceived that by means .of various
mappings the relationships between various classes.of topological spaces can be.established. Spe-
cially, one may ask. Can a particular topological property be expressed as an image of a metric
space under some mapping? As is well known the space with a point-countable .base can be de-
scribed as an image of a metric space under an. open s-mapping. The quotient s-mappings are a
generalization of open s-mappings. In 1966, Arhangel’skiil’] posed the following question. what
“internal characterization do thé quotient s-images of metric spaces have?

B Hoshinal® and Gruenhage, Michael, and Tanakal* have given some internal charactetiza
tions of the quotient s-images of metric spdces respectively. However, their characterizations are
complicated in statement, and it is difficult to use their characterizations to further ' study the
property .of spaces which can be expressed as quotient s-images of metric spaces. Recently , Tana-
 kal*Thas given a stmple internal characterization for the quotient s-images of metric spaces in
terms of the concept of cs -networks y 1.e., 2 topological space is a quotient s-image of a metric
space 1f and only if it is a sequential space with a pomt—-countable cs*-network. Thus the spaces
with a point- countable cs *-network play an important role in studying the quotient s-images of
metric spaces. According' to Alexandroff’s hypothesis, the following question can be raised. What
‘mappings can be used to represent the relationship between spaces With' a point-countable cs “-—'net#-_
work and metric spaces? We know ‘that the ‘quotient 's-images of metric spaces coincide with tht
sequence-covering, quotient s-images of metric spacest®. One can image that an internal charac-
terization of sequence-covering $-images of petric 'épa'ces;‘fwm-fplay positive role for seeking an in-
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ternal characterization of quotient s-images of metric spaces. It is the purpose of this paper that
by means of sequence-covering s-mappings the relationship'betweén spaces with a point-countable
cs " -network and metric spaces is established. |

Let X be a topological space. A collection &2 of subsets of X is called a cs* -network® for X
if for each »& X, for its open neighborhood U in X, and for a sequence {z,} in X which con-
verges to z, there is a subsequence {z, } such that {z} 9 {x.ig &N }'CPCU for some P& &2,
For convenience’ sake ., a sequence {z.} which converges to z is somectimes denoted by {z} U {z.}.
A mapping . X—} is a sequence-covering if every convergent sequence (inéluding its limit) of
} is the image of some compact subset of X under {; fis an s—-mapping if £~'(y) is separable for
each y&1. | _

By the proof of Lemma 1. 17 of [ 5], we have the following lemma.

Lemma Suppose & is a point-countable cs*-network 'fbr X. For a convergent sequence
{z} U {2} of X, let K={2}J{z.: nEN}. If U is an open neighborhood of K, then there is a
subcollection & of &2 having the following property, which is denoted by F(K,U) .

(1) & is finite;

(2) KCU&¥CU;

(3) For each P€ .5, P[\K+#¢. And if P contains a subsequence -of {z.} , then 2z € P.

Theorem A space X has a point-countable c¢s* -network if and only if X is the sequence-
covering s-image of a metric space. 1

Proof Sufficiency. Su'ppose f is a sequence-covering s-mapping from a metric space M on-
‘to X. Since M is a metric space, there is a o-locally finite base for M, which is denoted by .
Put | _

_ @“_“{f(B)BE%}
Then &2 is point-countable in X because f is an s-mapping. For a sequence {z.} of X which con-
verges to z, put
' ' K = {z} U {z.: » € N}.
Let U be an open neighborhood of X. Then f(L) =K for some compact subset L of M because {
is a sequence-covering mapping. Take z & L[} f'(z.) for each n & N. Since L is a compact
metrizable subspace of M, the sequence {z} has a convergent subsequence {z} |J{z.} in M.
Thus f(z)=z, and {z} U {z: i€ N}Cf ' (U). There is an & N such that '
(B U e i) CBCHO
for some BE . Let P=f(B). Then PESZ and
{z} U {z.; i =i} CPCU.

Therefore &2 is a point-countable cs*-network for X. _

Necessity. Suppose & is a point-countable cs®-network for X. Denote & by {P.; a€ A}.
We assume that D is closed under finite intersections. Let A denote the set 4 with discrete topolo-
gy for' each t& N. Put
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M= {f= (&) € I{A: i1 € N}; {P.: 1 € N} C &L,
which forms a déscending network at some point z(f) & X},

and endow A1 with the subspace topology induced from 'the usual product topology of the collce-
tion {4;; t€ N} of discrete spaces. Since X is Hausdorff, z(f) is unique in X for each f& Al.
We define f. M—-;-X by f(B8)=z(B) for each BE M. Thus {z(B)}=[{P.: :EN}. It is well
known and easy to check that f is an s-mapping from M onto X (cf. [6]). We will show that _
is a sequence- covermg mapping. For a convergent sequence {z} U {z.} of X, we assume that all
TS are dlstmct and that z.=%z for each nEN Put

K= {z} U {za: nGN}, _

= {(F C 2, #  has the property F(K,X)
| Wthh is described in the Lemma}.
Then, K2 is countable because Q’Z’ is point-c ountable in X and K is a countable subset of X. De-
note & by {(&#;, 1€ N}. For each n&N, let .
= {PEN{Fi.i<n}; P[] KF¢}.
Then 2, has the property F(K,X). Since & is closed under finite intersections,. there is a finite
subset B3, of A.such that ' '
L, = {P,. a & B.}.
Put
= {f= (&) € I{B.; i € N}; P, C P, foreach i€ N}.
Then L is a compact*subset of IT{B;;: t& N} for L is closed in IT{A4:; t&EN}. To end the proof of
the theorem, we will check that IA—M and £(L)=K.
Suppose f=(a&) & L, and let '
KB =K N (N {Ps: i € N}).

Then {X{) P, . ie N} is a sequence of non-empty descending closed subsets of the compact subset
K of X by the property F(K,X) and the definition of I, so K (ﬂ) F= . Take _/GK (#). Then
{P.: 1€&N} forms a network at y in X. In fact, let V' be an open ne1ghborhood of yin X. lf 7
=2z, then
' (1} U {za: n=m)} CV
for some m& N. Put .'

Ki= {y} U {za: n =m},

K= K\K\.
By the Lemma , there is a subcollection 7' of & with the property F(KX,, V) Since Kis finite
and K.CX\{y}, there is a finite subcollection " of & with K. |JSF"TX\{y} and PN K;
#¢ for each PE ", Put '

' F =7 ) T

Then 5 has the property F(K,X), so & =%, for some 1 & N. Since y & P, € &, and y&
U&F", we ‘have; yEe P, U&F " CV, and consequently {Pa;} forms a network at y in X. If y7=
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z, then y& PCV\(K\{y}) for some PE 2. By the Lemma, there exists a subcollection %7 of
P with the property F(KX\{7}, X\{7#}). Put _

. - 7 =5 U {P).

Then & has the property F(K,X), and & =5 for some 1& N. Hence y& P CPCV because
y € P, € Fiand y& U F7. So {P,: i€ N} also forms a network of # in X. Therefore, f=
(@) EM, [(f)=yEK. Thus LCM, and f(L)CK.

On the other hand, Suppose_ Y& K.' Then there is F; &5 with y € F;because F;has the
property F(K,X) for each 1 & N Thus, for each n& N, there is a, & fB.such that Pan= () {F;.
1< . Let f=(a). Then fE& L. Since y& K[} ([{Pus: t1EN}), {Po: i€ N} forms a de-
scending network at y in X, and y=f(f) by the same method used in the proof of the above
paragraph. Hence KCf(L).

In a word, f (L) =K. Therefore, f is a sequence-covering mapping from the metric space
M onto X. Thé proof 1$ complete. ' .

Corollaryt®*} The following statements are equivalent for a space X

(1) X is a sequence=covering quotient s-image of a metric space;

1 (2) X is a quotient s-image of a met'ric' spaCe; '

(3) X is a sequential space with a point-countable cs*-metwork.

Proof (1)=>(2) is obvious. '

(2)=(3). Suppose f is a quotient s-mapping from a metric space M onto X. Since the
property of sequential spaces is preserved under quotient mappings (cf. [7]) ,' X is a sequential
space. Let % be a o-locally finite base of the 'metric space M, and put

& :_{f(B): B € &%)
Then &2 is point-countable in X. For a sequence {z.} of X which 'converges' to z, let U be an
open neighborhood of z in X. We assume that all z,’s are distinct, and z,&U\{z} for each n &
N. Let A= {2z.; nE N}. Then A is not a closed subset of X. Since M is a k-space, there is a
compact subset Z of M such that f(Z) () A4 is not a closed subset of X (cf. [8]), and so f(Z) N
A is infinite. Thus, there is a subsequence {z.} of {2} with {z. }Cf(Z)[|A. Take z& Z with
f (z) =1, for each ¢ & N. Since 7 is a compact metrizable space, we can assume that the
sequence {z} converges to a point z fo Z. Thus f(z)=z. Since {z} U {z: iéN}Cj“(U),
there is an 10& N and a BE Z such that {z} U {z; i =t} C”BCf'(U), and hence
' (z} U {2: i =0} C F(B) CU.

Therefore, &2 is a point-countable cs*-network for X. % 1

(3)=(1). Suppose X is a sequential space with a point-countable cs*-network. There is a
metric space M and a sequence-covering s-mapping f from M onto X by the Theorem. We will
prove that f is a quotient mapping. Let AC_X such that f~'(A4) is closed in M. Fox_" a convergent
- sequence K of X, there is a compact subset L of M with f(L)=K. Let Li=f"'(4) (L. Then
L1 is compact in M, and so f(I,) is compact in X, i.e. , A[ K is compact in X, and thus A()
K is closed in X. Since X is a sequential space, A4 is closed in X. Therefore, fis a quotient map-
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ping. _

Remark The condition “X is a sequential space” in the above Corollary cannot be weak-
ened to “X is a k-space”. Since fN isa non-metrizable compact space, SN cannot be the quotient
s-image of a metric space by Corollary 3.7 in [2]. However, BN is a k-space having a point-

countable cs* -network because there is no non-trivial convergent sequence in SN (cf. [9]).
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Abstract In this paper we discuss the strongly semisimple radicals of associative rings, give a suffi-
cient and necessary condition for a radical to be strongly semisimple, and characterise the hereditary

strongly semisimple radicals. We prove that the union radical of strongly semisimple radicals is strong-

ly semisimple.
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Let R be a radical property. R is said to be hereditary if for every ring A and every ideal / of
A we have R(I)=I1{\R(A). Ris said.to be strongly semisimple if evefy homomofphjc image of
e'very R-semisimple ring ié again [i-semisimple. We have
Theorem 1 For every radical property I8 the follbwing conditions are 'equivalent;
(1) R is strongly semisimple ;
- (2) For every ring A and every ideal [/ of A, A/(R(A)+T) is R-semesimple;
~ (3) For every ring A and every ideal I of A, R(A/I)=(R(A)+1)/1;
(4) For every ring A and arbitrary idealshll and I,o0f A, (I,++1.)/ (I, +R([2)) is R-
semisimple.
Proof (1)=(2). We have
' A/(RCA) 4 1) == (A/RCA))/((R(A) + ID/R(A)).
(A/RCA))/((R(A)+1)/R(A)) is a homomorphic image of R-—sémisimple‘ring A/R(A). Thus
A/ (R(A)-H ) is R-semisimple.
(2)=(3). We have
(A/1) ] ((RCA) + 1)/1) = A/(R(A) + D).
A/ (R(A)+1) is R-semisimple. Thus R(A/I)”(RB(A)+1)/1. Since
' (R(A) + DD/1 = R(A) /U [ R(4))
and R(A)/ (U R(A)) is a radical ring, we have also (R(A)+1)/ICR(A/1). Hence R(A/I)

=(R(A)+1)/1.
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