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THE BARRELLED PROPERTY OF FUNCTION
SPACES C,(Y|X) AND C,(Y|X)
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1. INTRODUCTION

For a completely regular 77 space X, C(X) denotes the set of
all continuous real-valued functions on X. If Y is a subspace of
X, CY|X)={f € C(Y) : [ is extendable continuously over
X}. C,(Y|X). topologized as a subspace of C,(Y). has proved
to be uscful in the theory of function spaces. For example, it
was used by Lutzer and McCoy in [5] to characterize the Baire
property of C,(X) as “C,(X) is Baire if and only if for each
countable Y C X, the space C,(Y|X) is Baire”. The barrelled
property is an important topic of functional analysis. It is
connected to general topology via the Nachbin-Shirota theorem
of function spaces which characterizes the barrelled property
of Cx(X) topologically. In the first part of this paper, we
give topological characterizations of the barrelled property of
C,(Y]X) and C,(Y]X) in the similar form of Nachbin-Shirota
theorem. As an application of the main results, we obtain a
paralled characterization of the barrelled property of C,(X) to
that of the Baire property quoted above. Since C,(Y]X) and
C,(Y]X) are dense in C,(Y') and Cy(Y") respectively, the Baire
property and the barrelled property of the former imply that
of the latter. So it is an interesting question (see Question
3.9 in [5]) that whether the Baire property of C,(X) can be
characterized by using C,(Y) instead of C,(Y]X). We give an
example to show that the answer to this question restated for
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barrelled property in place of the Baire property is negative.
All the applications and examples are put in the sccond part.

Let X be a space and ¥ C X. For A C Y, f € C(Y|X)
and € > 0, denote W[f, A.e: Y|X] = {g € CY|X) | fla) —
gla) [< eforax e A}y and W(f, A,e; YIX) ={g € CY|X):
L fx)—g(x) |< efora e A} {W(f,F.e; Y|X): feCY|X),
F C Y is finite and ¢ > 0} and {W(f.K.,e; Y|X) : f €
C(Y|X),K CY is compact and ¢ > 0} are bases of C,(Y|X)
and Cy (Y| X) respectively. In the case of Y = X, W/[f. A, e; YV|X]
and W(f, A, e; Y|X) are denoted as W[f, A, e] and W(f, A, €)
respectively.

A set A C X is called bounded in X(or a bounded set of
X) if for each f € C(X), the restriction f [4 of f on A is
bounded. Let E be a linecar topological space. A set B C E is
called convex if ta + (1 —¢)b € B for t € [0.1] and a,b € B.
B is called circled if ta € B for t € [—1.1] and a € B. If for
each = € F, there exists A, > 0 such that [0, A\,]Jx C B, then
B is said absorbent. B is called a barrel if it is closed, convex,
circled and absorbent. A lincar topological space F is called
locally convex if it has a ncighborhood base of zero consist-
ing of convex sets. Note that C,(X), Cy(X) and every normed
lincar space are locally convex. For the definition of normed
lincar space, refer to any standard textbook of functional anal-
ysis. A complete normed linear space is called a Banach space.
Let C*(X) denote all the bounded continuous functions on X
and C(X) the normed space with the supremum norm. Then
C*(X) is a Banach space. A locally convex linear topological
space is called barrelled (or has barrelled property) if each bar-
rel is a neighborhood of zero. A topological space is Baire if
the intersection of countably many open dense sets of the space
is dense in it. It is known that each Banach space is Baire and
each Baire locally convex linear topological space is barrelled.

The following theorems are well-known.

Theorem 1. (Nachbin and Shirota, see [6] or [7]). For a space
X, the following arc equivalent:
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(1) Every bounded closed set of X is compact.
(2) Cx(X) is barrelled.

Theorem I1. (Buchwalter and Schmets [2]). For a space X,
the following are equivalent:

(1) Every bounded set of X is finite.

(2) Cp(X) is barrelled.

We assume all spaces in this paper are completely regular
1.

2. CHARACTERIZATIONS FOR THE BARRELLED PROPERTY
OF C,(Y|X) aND C(Y[X)
Let X be a space. For a subset H of C(X), let
K(H) = {x € X : for every neighborhood U of x
there is f ¢ H such that |y, = 0}.
Obviously, K(H) is closed in X.
The result below is useful.

Proposition 2.1 (Asanov and Shamgunov [1]). It H is a bar-
rel in Cy(X), then K(H) is bounded in X.

To prove the characterization theorems we give two lemmas
first.

Lemma 2.2. Let L be a compact set of X. If {U7,Us,... ,U,}
is a collection of open sets of X covering L, then there are
hi by, ... h, € C(X,]0,1]) such that for each i, h; *(0,1]) C
Uy, h=3Y" h; € C(X.[0.1]) and h(x) =1 for each x € L.

Proof: Choose a partition of unity {fo, fi...., f.} of X sub-
ordinate to the cover {Uy, Uy, ... ,U,}, where Uy = X\L. Let
h; = f; for i > 1. Then h;’s are desired.

C*(X) denotes all the bounded continuous functions on X
and C*(Y|X) = C*(Y)NnCY|X). CHX) and CH(Y|X) are
the space C*(X) and C*(Y|X) respectively with the uniform
norm topology. It is easy to see that C,(Y|X)(Cr(Y]X)) is
dense in C,(Y)(Cy(Y) resp.). This is different for C*(Y|X).
because
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Lemma 2.3. C}(Y|X) is a closed subspace of C7(Y).

Proof: denote G = {f € C*(X) : fly = 0}. Then G is a
closed linear subspace of C*(X). Let C*(X)/G be the quotient
space of the normed space C*(X) mod G. Since C¥(X) is a
Banach space and G is closed, C*(X)/G is a Banach space. It
can be proved that there is a norm-preserving linear mapping
between C(Y|X) and C(X)/G. So CH(Y|X) is also a Banach
space. [

Theorem 2.4. for a space X and a subspace Y of it, the fol-
lowing are equivalent:
(1) C(Y|X) is barrelled.
(2) Every closed subset of Y which is bounded in X is com-
pact.

Proof: The idea of this proof is similar to that of [1].

(1) — (2). Let A be a closed subset of Y which is bounded
in X. It is easy to see that W{[fy. A, 1; Y|X] is a barrel in
Cp(Y|X), where fy = 0 By (1), it is a neighborhood of f
and so there are a compact set I of ¥ and € > 0 such that
Wi(fo. K,e; Y|X) C W/fy, A, 1; Y|X]. This implies that A C
K and so A is compact.

(2) —(1). Let my : Cx(X) — Ci(Y|X) be the restriction
mapping. Then 7y is a continuously linear mapping. Given a
barrel H in C(Y|X), then 7, '(H) is a barrel in C(X). By
Proposition 2.1, K(7y'(H)) is a bounded closed set of X. Let
G(H) = K(my'(H))NY. Then G(H) is a closed set of Y which
is bounded in X. By assumption, G(H ) is compact. We proved
that there is € > 0 such that W(f,. G(H).e: Y|X) C H. At
first, we prove

Claim. If f € C(Y|X) and f|¢) =0, then f € H.

Proof of Claim: Suppose f ¢ H. Since H is closed in Cy (Y[ X),
there are a compact set K of Y and p > 0 such that W(f, K, p;
Y|IX)NnH = 0. We may assume that G(H) # Y, otherwise
Cy(Y[X) is just the barrelled space C(Y). Since flgn =
0, there is an open set U of X such that K N G(H) U



THE BARRELLED PROPERTY ... 281

and for each x € UNY.,|[f(x)] < p. Denote L = K\U. By
the definition of G(H) and the compactness of L, there are
open sets Vi, Vo, ..oV, of X such that L C', V; and for
each i, if h € C(X) and h|x\\, = 0, then h € my'(H). By
Lemma 2.2, there are hy, hy, ... h, € C(X,[0,1]) such that
hilxyw, =0, h =37 h € C(X.[0.1]) and h(z) = 1 for
every v € L. Let f be a continuous extension of f over X
and § = 20 hif. Since nhif|x\v. = 0, nhif € 7y (H). As
my (H) is convex, § = S (1/n)(nhif) € my' (H). Let g =
Gly. Then g € H. Now we derive a contradiction from proving
that ¢ € W([f, K,p; Y|X), ie.. | f(x) — g(x) |< p for every
r € K. As f], = g|., we may assume x € K NU. Then
F(e) = fla) =l 1= 5 hile) || F(@) |€] £(2) |< p. and the

claim is proved.

By Lemma 2.3, C(Y|X) is a Banach space. Because H N
C*(Y']X) is a barrel in C}(Y'|X). there exists ¢ > 0 such that
W{(fo.Y.3¢: Y|X) C HNCHY|X). We prove that this € is
the required one.

Let f € W{(fo.G(H),¢e; Y|X). Define g(x) = max{f(x),e}+
min{ f(x), —e}. Then g € C(Y'|X). glam) = 0 and | f(x) —
g{x) |< e for each z € Y. IT follows that 2g € H by the claim
and 2(f—g) € HNC,(Y|X). Since f = (1/2)(29)+ (1/2)(2f —
2¢g). f € H. This completes the proof of the theorem. [

Remark. If L in the proof is empty, let ¢ = fo, the zero
function.

Theorem 2.5. For a space X and a subspace Y of it, the
following arc equivalent:
(1) C,(Y]X) is barrelled.
(2) Every (closed) subset of ¥ which is bounded in X is
finite.

Proof: (1) — (2). Assume A is a subset of ¥ which is bounded
in X. Then W{fy. A.1; Y|X]is a barrel in C,(Y|X). By the
assumption, there are a finite subset F of Y and € > 0 such
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that W(fo, F.e; Y|X) C W|f. A, 1; Y|X]. This implies that
A C F and thus A is finite.

(2) = (1). Let H be a barrel in C,(Y|X). Then 7y (H)
is a barrel in C,(X) and thus in Cj(X). By Proposition 2.1,
K(my'(H)) is bounded in X. Let G(H) is finite. By the same
method as in the proof of the foregoing theorem, it is proved
that there is ¢ > 0 such that W(f,. G(H).e: Y|X)C H. O

3. APPLICATIONS AND EXAMPLES
At first, we derive some results from the theorems in §2.

Proposition 3.1. For a space X and a subspace Y of it. if
C,(X) is barrelled, then C,(Y'|X) is barrelled.

Proposition 3.2. For a space X and a closed subspace Y of
it, C(X) is barrelled, then Cy(Y|X) is barrelled.

These follow directly from Theorem I and IT in §1 and The-
orem 2.4 and 2.5.

Theorem 3.3. For a space X, C,(X) is barrelled ift for every
countable subspace Y of X, C,(Y'|X) is barrelled.

Proof: Nccessity follows from Proposition 3.1. Now assume
that for every countable subspace Y of X, C,(Y|.X) is barrelled.
If C,(X) is not barrelled, by Theorem II, there is an infinite
bounded set A in X. Let Y be a countably infinite subset of
A. Then Y is bounded in X but not finite. By Theorem 2.5,
C,(Y']X) is not barrelled. This contradiction show that C,(X)
is barrelled. [

As C,(Y|X)(CyY|X)) is dense in C,(Y)(Cr(Y) resp.), if
C,(Y|X)(Ch(Y|X)) is barrelled, then C,(Y)Cy(Y) reap.) is
barrelled. The following examples shows that neither converse
holds. It also emphasizes that Proposition 3.2 needs Y to be
closed and that "k” may not replace "p” in Theorem 3.3
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Example 3.4. Let X = {0} U {l/n : n € N} with the sub-
space topology of R and Y = {1/n:n € N}. Then Cy(X) =
Cr(X) and C,(Y) = RY = Cy (V) are barrelled, but C, (Y[ X) =
Cr(Y]X) is not barrelled.

Proof: C,(Y|X) = Ci(Y]|X) is not barrelled because Y is
bounded in X but neither finite nor compact. [

Let E and F be lincar topological spaces and f an open
lincar continuous mapping from £ onto F. Then if F is bar-
relled, F'is also barrelled. Although my : CH(X) — CH(Y]X)
is always an open mapping (Under this map the unit ball
of CH(Y]X) is the image of the unit ball of C*(X)), my :
Cy(X) = C,(Y[X) (or my @ Cyu(X) — Cr(Y]X)) need not
be (see Example 3.4). However, as the following shows, they
arc open when Y is a closed subspace of X. So Proposition 3.2

can be also proved in this way.

Proposition 3.5. Let X be aspace and Y a closed subspace of
X. Then my : C\)(X) = C,(Y|X) and my : Cp(X) = Cp(Y]X)
are open mappings.

Proof: We only give a proof for the case of "k7, that for the
case of "p” is similar. Let W(f, K, €) be an open set of C(X),
where f € C(X), K is a compact set of X and ¢ > 0. Then
Ty (W(f, K,e)) = W(fly, KNY,e; YV|X). In fact, it is easy
to see that my (W(f. K < ¢)) C W(f|ly.KNY.e: Y|X). Let
geW({fly,KNY,e; Y|X). Choose a continuous extension ¢
of g and then an open set U of X such that K NY C U and
sup{| f(x)—g(x) |: € U} <e. Since K\U and Y are disjoint
closed sets of X and K\U is compact, there is ¢ € C(X,0,1)
such that ¢(K\U) =0and ¢(Y) =1. Let g = G-+ f-(1—¢).
Then gly = gly = g and

sup {| f(x) — gla) [ v € K}

= sup{| f(x) = g(x) - o(x) = f(x) + f(x) - o(a) [ x € K}

= sup{| f(x) = §e) | - | o(a) - x € K}

= max{sup{| f(z) —g(z) | - | o(2) |- x € K\U},

sup{[ f(x) = g(x) |- | o(x) [ v € KN UL}
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=sup{| f(x) —glx) |- | o(x) ;2 € KNU}
<sup{] f(x) = g(x) fr e KNU} <e
So g € W(f,K.¢) and thus g € my (W(f, K.€)). The proof is
complete. [

Let X and Y be the spaces in Example 3.4. W {(fy, {0}, 1) is
an open set of C,(X), where fo = 0. Then my (W (fo.{0},1))
is the set of all convergent sequences with limits in (—1,1). It
is obvious that my (W ( fo. {0}, 1)) is not open in Cy(Y|X).

In an opposite direction to Example 3.4, we give an example
to show that an analog for C(X) of Theorem 3.3 is not true.

Example 3.6. Let X = w; with the interval topology. Then
for every countable closed subspace Y of Ci (Y| X) is barrelled,
but Cy(X) is not.

Proof: Since every countable closed subspace Y of X is com-
pact, so C(Y[X) — Cp(Y) = C:(Y) is barrelled. However,
since X is a pseudo-compact but not compact space. By The-
orem I. Ci(X) is not barrelled. [

It is shown in [4] that for a space X and a subspace Y of
it, C,(Y|X) is Cech - complete if and only if C,(Y) is Cech -
complete and Y is C - embedded in X, i.e., every continuous
function on Y can be continuously extended over X. But this
is different for the barrelled property.

Example 3.7. Let X = wU{p} and Y = w, where p € Sw\w.
Then C,(Y|X) and C,(Y) = R are barrelled, but Y is not C
- embedded in X.

Proof: Note that if Y is countable and C - embedded in X, then
Y must be closed in X. So Y is not C' - embedded in X. To
prove that C,(Y'|X) is barrelled (C,(Y) is obviously barrelled),
we prove that every countably infinite subset A of ¥ must be
unbounded in X. Let A = A; U A such that |A;| = N = |4,
and A, N A, = 0. Since clyANclyA4s = (0, without loss of
generality, we may assume that p & cly A;. Denote 4; = {a, :
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n € N}. Define a continuous function f € C(X) as f(a,) =n
and f(x) =0 for other 2’s in X. Then f|, is unbounded.

At last, we give an example to show that in Theorem 3.3,
C,(Y']X) can not be replaced with C,(Y"). This also answers a
question in [5] (Question 3.9) restated for the barrelled prop-
erty in place of the Baire property.

Example 3.8. Let X = Jw. then for every countable sub-
space Y of X, C,(Y) is barrelled, but C,(X) is not barrelled.

Proof: It is obvious by Theorem II that C,(X) is not barrelled.
Let Y obe a countable subspace of X. The following fact about
Hw is used now and then in the proof:

"If x € fw and B C fw with | B| = Ny, then there is a clopen
neighborhood U of x such that [B\U| = R,".

We can assume that Y is infinite, otherwise, C,(Y") is obvi-
ously barrelled. Let A be an infinite subset of Y. We prove
that A is unbounded in Y. Then by Theorem II, C,(Y) is
barrelled.

Enumerate Y as {y; : i € N}. Let n; = 1. By the fact above,
there is a clopen neighborhood Uy of y,,, such that |[A\U;| = N,.
Let no = min {i: i € N and y; ¢ Up}. Then there is a clopen
ncighborhood Us of y,, such that Uy Ny = (0 and |A\ (U} U
Us)| = V. Let ng =min{i: i € N and y; ¢ Uy UUs}. There is
a clopen neighborhood Uy of 4, such that Us N (U, U Uy) = ()
and |A\ (U UU,UU;)| = N,. Continuing in this way, we obtain
a pairwise disjoint cover {U; : i € N} of Y by clopen sets of X
such that A has nonempty intersections with infinitely many
members of the cover. Let W, = U, nY for 7 € N. Then
{W; :i € N} is a pairwise disjoint open cover of Y. Define a
function f € C(Y) as f(y) =i if and only if y € W;. Then f
is obviously unbounded on A. The proof finishes. [0

Remark. The authors would like to thank the referce for
simplifying the proof of Example 3.8. The original proof in-
volves a case discussion for the derived set of Y.
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