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MAPPING THEOREMS ON X-SPACES
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We prove two mapping theorems on R-spaces: (1) N-spaces are preserved under closed, Lindelof
mappings; (2) a perfect inverse image of an X-space is an X-space if and only if it has a G;-diagonal.
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1. Introduction

The concept of X-spaces was first introduced by Meara in [7] as a generalization
of metric spaces and Ry-spaces (Michael [6]). The main results of this paper are
two mapping theorems on N-spaces:

(1) N-spaces are preserved under closed Lindelof mappings. This affirmatively

answers a question posed by Tanaka in [8].
(2) A perfect inverse image of an N-space is an N-space if and only if it has a
G;s-diagonal.

Throughout this paper, all spaces are assumed to be at least T, and regular. All
mappings are continuous and surjective. A mapping f from X onto Y is to be
denoted by f: X - Y. N denotes the set of positive integers.

Let X be a topological space. A family & of closed subsets of X is a k-network
for X if for every compact set K < X and neighborhood U of K, there is a finite
F <% so that Kc|J%F < U. % is a cs-network for X if for every convergent
sequence Z in X and neighborhood U of Z, there is a F € % so that Z is eventually
in F and F < U. A regular space with o-locally-finite k-network is called an X-space
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2. Closed images

Mapping f: X - Y is called Lindeldf if for each ye Y fiber £ '(y) is a Lindeldf
subspace of X; f is called compact-covering [6] if every compact subset of Y is
the image of a compact subset of X.

Lemma 2.1. If f: X > Y is closed Lindelof, then f is a compact-covering.

Proof. Let K be a compact subset of Y; then f '(K) is a Lindelof subset of X.
But if g =f], k), then g is a closed mapping from the paracompact space f '(K)
onto K. By Proposition 7.2 in [6], g is compact-covering. Since K is compact, there
exists a compact subset K of f~'(K) such that g(L)=K. Also, L is a compact
subset of X, and f(L)=K. [

Theorem 2.2. W-spaces are preserved under closed Lindelof mappings.

Proof. Suppose X isan N-space, and f: X = Y is closed Lindel6f. X has a o-locally-
finite closed k-network %. Put & ={f(P)|Pe P}. Since f is closed Lindelof, F is
a o-closure-preserving and locally-countable collection of closed subsets of Y. It is
clear that the compact-covering image of a k-network is a k-network.

Hence, by Lemma 2.1, % is a o-closure-preserving and o-locally-countable closed
k-network. Foged [1, Theorem 4, (a) - (d)] proved that a space with o-locally-finite
closed k-network has a o-discrete cs-network. It is not difficult to check that, in his
proof, the condition “o-locally-finite closed k-network” can be replaced by “o-
locally-countable and o-closure-preserving closed k-network”. Therefore a space
with o-locally-countable and o-closure-preserving closed k-network is an N-space.
Therefore Y is an N-space. [

Remark 1. The following question is posed by Tanaka in [8]: Are the spaces which
are closed Lindel6f images of metric spaces X-spaces? Theorem 2.2 answers the
question affirmatively.

Remark 2. Foreach a <w,, let I, =[0, 1] with usual topology, and let X be quotient
space of ®,,,, I, obtained by identifying {0}. Then X is a Lasnev space and is not
an X-space (by [5, Proposition 6.4]). Hence N-spaces are not preserved under closed
mappings.

Theorem 2.3. The following properties of a space are equivalent:
(a) X is a Fréchet and N-space.
(b) X is a closed Lindeldf image of a metric space.

Proof. (b)- (a). It is known that closed mappings preserve the Fréchet property.
By Theorem 2.2, X is an N-space.



S. Lin / Mapping theorems on W-spaces 161

(a) - (b). Suppose X is a Fréchet and N-space. Foged [2, Theorem 1] has shown
that X is a Fréchet space with o-hereditarily closure-preserving k-network if and
only if X is a Lasnev space (a space which is a closed image of a metric space).
Let M be a metric space, f: M - X a closed mapping. Since M is a paracompact
N-space, and X a k-space with point-countable closed k-network, according to [5,
Proposition 6.4] for each ye Y, af "'(v) (boundary of f '(y)) is Lindeldf. Thus
there exists a closed subset M' of M such that g=f|,,: M'~> X is closed Lindeldf
with g(M’')=X. Hence X is a closed Lindel6f image of a metric space. [

3. Perfect inverse images

For a topological space X, let #(X)={K < X|K is a nonempty compact subset
of X}. If % and ¥ are collections of subsets of X, let 4 A ¥V ={U n V|Ue U and
Ve ¥} Forany Ac X, let (U)o={UeU|UnA#=@} and st(A, U) =\ (U) 4.

We consider the following properties of space X.

(A) For any open cover of X there exists a o-discrete refinement & such that
every compact subset of X is covered by a finite subcollection of #.

(B) For any open cover of X there exists a sequence (%,) of open refinements
which satisfies the condition that for each K € #(X), there exist K; € H(X) iz
such that K ==, K; and [(4,) k| = 1(icm)

(C) There exists a sequence (%,) of open covers such that for each K € #(X),
K=, st(K, %,).

Lemma 3.1. If Yis an X-space and f: X - Y is a perfect mapping, then X has property
(A).

Proof. Since Y is an X-space, Y has a o-discrete k-network (by Foged {1, Theorem
4}). Suppose P =|J, P, is a k-network for Y, each P, is a discrete collection of
subsets of Y.

Suppose U is any open cover of X. For each y € Y we can find a finite subcollection
U(y)< U such that f7'(y)=lJ U(y). Let G(¥)=Y —f(X —J U(y)), then §=
{G(y)|y € Y}is an open cover of Y. By the definition of k-network and the regularity
of Y, without loss of generality, we may assume 2 is a refinement of 4. Consequently
for each Pe P there exist U(i, P)e U such that f '(P)c U=, U(i, P). Let
F(n, iy={f"(P)n Ui, P)|PeP,}. Then F=\,, F(n, i) satisfies (A). [

Lemma 3.2. (A)- (B).

Proof. Let % be an open cover of a space X and take a o-discrete refinement
F=\U, %, of U with the property (A). Let ¥, ={F(n, a)|a € A,}. By regularity,
we may assume each element of & is a closed subset of X. For each neN, ac A,
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pick U(n,a)e¥ such that F(n,a)cU(n,a), and put W(na)=
U(n,a)=\J{F(n,B)|BeA,—{a}}. We define

W,={W(n,a)|acA,}u{U-UZF,|Uecu}.

It follows that (%) satisfies (B).

It is clear that (%,) is the sequence of open refinement of 4. To see that (%))
satisfies (B), let K € % (X), by the property (A), there exists a finite subcollection
F'={F,|i<m} of (¥)x which covers K. For each i€{1,2,..., m}, there exists a
n,eN such that F,e%,. Then KnFe#(X)icm, K=Uicm KnF, and
|(Wn,»)KmE|:1' U

Lemma 3.3. (B)+ G,-diagonal - (C).

Proof. Suppose a space X with property (B) has a G;-diagonal. Clearly X is a
submetacompact (i.e., 6-refinable} space with a G;-diagonal, so X has a
G*-diagonal [4, Theorem 2.11]. Let (%,) be a G¥-diagonal sequence, i.e., {x}=
(M, st(x, G,) for each x€ X. We may assume that 4, refines 9,. Now we prove
for each K e #(X), K =, st(K, %,). Suppose xe X — K; then {X —st(x, 4,)|n¢e
N} is an open cover of the compact subset K, so there exists a neN such that
K < X —st(x, §,). Therefore K nst(x, 4,)=0, ie, x#st(K,%,). Hence K=
(M st(K, G).

Now, we use the regularity of X and property (B) to inductively define, for each
meN, a sequence (¥,,,), of open covers for X such that

(a) for each neN, {V|Ve¥,,,}is a refinement of (A;;=m ¥i;) A (Ar=m %);

(b) (¥m.n)n is a sequence satisfying the condition of property (B).
We prove for each K € #(X), (Vi st(K, Vi) = K. For each n €N, take s > n. Since
the sequence (¥, ), satisfies (b), there exists K; € #(X)<p) such that K = Uien K;
with |(CVSJ<.')K:" =1. Then

St(Ki, cV‘s,ki) = U{‘_/| V€ (Vs,ki)l(i}c St(Ki’ cV‘n,n) < St(Ki, (gn)

Pick r>max{s, k,, k», ..., k,}; consequently,

Mk SUK, Vi) ©st(K, V1)
=Uicn st(K, V1) € Uien st(KG, Vi) = st(K, G,).
Hence
(Mo UK, Vi) = (o s(K, G,) = K.
S0 K =i UK, Vo ro)-

Theorem 3.4. Suppose there exists a perfect mapping f from a topological space X onto
an N-space Y. Then X is an N-space if and only if it satisfies any of the following:
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(a) X has a Gs-diagonal.
(b) X has a point-countable k-network.

Proof. Necessity is obvious.

Sufficiency: Since a o-space has a Gj;-diagonal, by Corollary 3.8 in [5], it is
sufficient to show that if X has a G;-diagonal, then X is an N-space.

Suppose X has a G,-diagonal. By Lemmas 3.1, 3.2, and 3.3, there exists a sequence
(%,) of open covers for X such that for each K € #(X), K =(), st(K, 4,). We can
assume 9,., refines %,. For each neN, by Lemma 3.1, %, has a o-locally-finite
closed refinement %(n) such that every compact subset of X is covered by a finite
subcollection of %(n). Denote by F(n)=\,, #(n, m) where each F(n, m) is a
locally-finite collection of subsets of X. We can assume F(n, m)< F(n, m+1) for
each meN.

Since Y is an N-space, let |, Z(k) be a k-network for Y where each Z(k) is
locally-finite and Z (k)< Z(k+1) for each keN. Let @(k)={f"(Q)|Qe Z(k)};
then (k) is a locally-finite collection of closed subsets of X. Put

P(n, m, k)=%F(n, m)rD(k).

Clearly 2(n, m, k) is locally-finite for each n, m, keN.

We complete the proof by showing that 2 ={_J,, ... ?(n, m, k) is a k-network for
X. For an open subset W and a compact subset K = W< X, since K =), st(K, 9,),
{W}u{X —st(K, 9,)|neN}is an open cover of compact subset f ~'f(K) of X. Thus
there exists a neN such that f 'f(K)c Wu (X —st(K, 4,)), so st(K, %,)n
f'f(K)< W. For each xe f 'f(K)— W, since x¢st(K, 9,), there exists an open
set V(x) containing x with V(x)nst(K, 9,)=0. Let G=Wu
(U{V(x)|xef "f(K)— W}), then f(K)< Y—f(X —G). So there exists a finite
Z'(kye Z(k) such that f(K)<|JZ'(k)c Y—f(X—G) for some keN. Take
@'(ky={f"(Q)|QeZ'(k)}; then f'f(K)= %'(k)= G. On the other hand, by
the property of F(n), there exists a finite F'(n, m)< (%(n, m))x such that K =
| F'(n, m)cst(K, 4,) forsome meN. Put @'(n, m, k) = F'(n, m) n 2'(k). It is easy
to check that K< | J P (n,m k)c W. [

Corollary 3.5. Suppose Y is an NX-space and f: X - Y is an open, closed, and finite-to-
one mapping. Then X is an N-space.

Proof. Since X-space is a o-space, X is a o-space [3]. Then X has a G,-diagonal.
By Theorem 3.4, X is an N-space. [
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