SPACES HAVING σ -HEREDITARILY CLOSURE-PRESERVING k-NETWORKS

SHOU LIN

Received July 10, 1990; revised September 17, 1990

ABSTRACT. In this paper, it is shown that a regular k-space is a cs- σ -space if it has a σ -hereditarily closure-preserving cs-network.

Throughout, all spaces are assumed to be regular and Hausdorff.

k-networks and cs-networks are two distinct concepts, but under a certain condition they are equivalent. For example, a space with a σ -locally finite k-network is equivalent to the space with a σ -locally finite cs-network [2]. As is well known, a Lašnev space has a σ -hereditarily closure-preserving k-network. A problem is whether a Lašnev space has a σ -hereditarily closure-preserving cs-network. In the first part we give a negative answer to this problem. Next, we knew that a space having a σ -hereditarily closure-preserving base is equivalent to the space having a σ -locally finite base [1], and a natural problem is whether a space having a σ -hereditarily closure-preserving cs-network is a space having a σ -locally finite cs-network. In the second part we give a partial answer to this problem. Finally, we knew that a Fréchet space having a σ -hereditarily closure-preserving k-network is the closed image of a metric space [3], and an interesting and important problem is whether a space having a σ -hereditarily closure-preserving k-network is a closed image of an k-space. If its answer is affirmative, then every space having a σ -hereditarily closure-preserving k-network is the union of an k-space and a κ -closed discrete space. In the third part we show that the last conclusion is true. It improves a result in [9].

First of all, let us recall some definitions. Let \mathcal{P} be a family of subsets of a space X. \mathcal{P} is hereditarily closure-preserving (abbrev. HCP) if, whenever a subset $S(P) \subset P$ is chosen for each $P \in \mathcal{P}$, the resulting family $\{S(P): P \in \mathcal{P}\}$ is closure-preserving. \mathcal{P} is a k-network for X if whenever K is a compact set of an open set U of X, then $K \subset \cup \mathcal{P}' \subset U$ for some finite $\mathcal{P}' \subset \mathcal{P}$. \mathcal{P} is a cs-network for X if for every convergent sequence Z in X and neighborhood U of Z, there is a $P \in \mathcal{P}$ such that Z is eventually in P and $P \subset U$. A space X is an X-space (resp. cs- σ -space) if X has a σ -locally finite k-network (resp. cs-network). An X-space is equivalent to a cs- σ -space [2].

Recall that the space S_{ω_1} is the quotient space obtained from the topological sum of ω_1 non-trivial convergent sequences by identifying all the limit points. S_{ω_1} has a σ -HCP k-network because it is a Lašnev space [3].

Theorem 1. S_{ω_1} has not σ -HCP cs-networks.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 54E20, 54E99

Proof. Let $X = \bigcup \{X_{\alpha} : \alpha < \omega_1\}$, where $X_{\alpha} = \{0\} \cup \{x_{\alpha,n} : n \in N\}$ with each $x_{\alpha,n}$ is an isolated point in X, and U is an open neighborhood of the point 0 in X if and only if for each $\alpha < \omega_1$, there exists $m(\alpha) \in N$ such that

$$\cup \{\{0\} \cup \{x_{\alpha,n} : n \geq m(\alpha)\} : \alpha < \omega_1\} \subset U,$$

then X is homeomorphic to S_{ω_1} .

If X has a σ -HCP cs-network. Let $\cup \{\mathcal{P}_n : n \in N\}$ be a σ -HCP cs-network for X, where each \mathcal{P}_n is HCP. For each $\alpha < \omega_1, n \in N$, put

 $k_{\alpha,2n-1}=x_{1,n}$

 $k_{\alpha,2n}=x_{\alpha,n}$

 $K_{\alpha} = \{0\} \cup \{k_{\alpha,n} : n \in N\}$

 $K_{\alpha,n} = \{0\} \cup \{k_{\alpha,m} : m \geq n\}.$

By transfinite induction, for each $\alpha < \omega_1$, there are $n(\alpha), m(\alpha) \in N$ such that for some $P_{\alpha} \in \mathcal{P}_{n(\alpha)}$,

$$K_{1,m(1)} \subset P_1 \subset X, K_{\alpha,m(\alpha)} \subset P_\alpha \subset X - \{x_\beta : \beta < \alpha\}, \alpha > 1$$

where $x_{\beta} \in X_{\beta} \cap K_{\beta,m(\beta)} - \{0\}$. For each $k \in N$, put

$$A_k = \{\alpha < \omega_1 : n(\alpha) = k\},\$$

then there is a $k \in N$ with $|A_k| = \aleph_1$. Let $\mathcal{P} = \{P_\alpha : \alpha \in A_k\}$, then $\mathcal{P} \subset \mathcal{P}_k$. For each $\alpha, \beta \in A_k$, if $\beta < \alpha$, then

$$x_{\beta} \in P_{\beta}$$
, and $x_{\alpha} \in P_{\alpha} \subset X - \{x_{\beta}\}$,

hence $P_{\alpha} \neq P_{\beta}$, and \mathcal{P} is HCP. For $\alpha \in A_k$, there exists $h(\alpha) \in N$ with $X_1 \cap K_{\alpha,m(\alpha)} = \{0\} \cup \{x_{1,n} : n \geq h(\alpha)\}$. For each $i \in N$, take $\alpha_i \in A_k$, $n_i \in N$ with

$$\alpha_i < \alpha_{i+1}, h(\alpha_i) < n_i < n_{i+1}.$$

Then $x_{1,n_i} \in P_{\alpha_i} \in \mathcal{P}$, and $\{x_{1,n_i} : i \in N\}$ is a discrete closed subspace of X. This contradicts with sequence $\{x_{1,n_i}\}$ converging to point 0. Therefore S_{ω_i} has not σ -HCP cs-networks.

By Theorem 1, a space with a σ -HCP k-network can not be a space with a σ -HCP cs-network. But, its converse proposition is true by the next Theorem 2. First, we establish a Lemma which is proved in [4].

Lemma 1. If \mathcal{P} is an HCP collection of X, then $\{\bar{P}: P \in \mathcal{P}\}$ also is an HCP collection of X.

Theorem 2. If a space X has a σ -HCP cs-network, then X has a σ -HCP k-network.

Proof. Let $\cup \{\mathcal{P}_n : n \in N\}$ be a σ -HCP cs-network for X, where each \mathcal{P}_n in HCP. We can assume that $\mathcal{P}_n \subset \mathcal{P}_{n+1}$ and each element of \mathcal{P}_n is a closed subset of X by Lemma 1. For a compact set K of an open set U of X, put

$$\mathcal{P}'_n = \{ P \in \mathcal{P}_n : Z \subset P \subset U \text{ for some convergent sequence } Z \}$$

$$F_n = \cup \mathcal{P}'_n$$

then $K \subset F_n$ for some $n \in N$. Otherwise, there exists $x_n \in K - F_n$ for each $n \in N$. Thus $\{x_n : n \in N\}$ is an infinite subset of K, and there is a subsequence $\{x_{n_i}\}$ which converges to some point $x \in K$ because K is a compact metric subspace. Hence $\{x\} \cup \{x_{n_i} : i \ge m\} \subset P \subset U$ for some $m \in N$ and $P \in \mathcal{P}_n$, so $P \subset F_n$. Take $i \in N$ with $n_i \ge \max\{n, m\}$, then $x_{n_i} \in (K - F_{n_i}) \cap P = \emptyset$, a contradiction. So for some $n \in N, K \subset F_n$, i.e., \mathcal{P}'_n is an HCP closed cover of the compact subset K of X, thus there exists a finite subfamily \mathcal{P}''_n of \mathcal{P}'_n such that \mathcal{P}''_n convers K[7], and $K \subset \cup \mathcal{P}''_n \subset U$. Hence $\cup \{\mathcal{P}_n : n \in N\}$ also is a σ -HCP k-network for X.

By Theorem 1 and Theorem 2, it is of interest to know whether a space with a σ -HCP cs-network is a cs- σ -space. One partial answer is given by the next Theorem 3.

Let \mathcal{P} be a collection of subsets of X, put

$$D(\mathcal{P}) = \{x \in X : \mathcal{P} \text{ is not point-finite at } x\},\$$

$$\mathcal{F}(\mathcal{P}) = \{\overline{P - D(\mathcal{P})} : P \in \mathcal{P}\} \cup \{\{x\} : x \in D(\mathcal{P})\},$$
 then the following Lemma 2 is proved by Y. Tanaka in [8].

Lemma 2. Suppose X is a k-space. If \mathcal{P} is an HCP collection of closed subsets of X, then $D(\mathcal{P})$ is a discrete closed subspace of X.

Lemma 3. Suppose X is a sequential space. If \mathcal{P} is an HCP collection of closed subsets of X, and any closed subspace of X is not homeomorphic to S_{ω_1} , then $\mathcal{F}(\mathcal{P})$ is point-countable.

Proof. If $\mathcal{F}(\mathcal{P})$ is not a point-countable collection of X, then $x \in \cap \{\overline{P-D(\mathcal{P})}: P \in \mathcal{P}'\}$ for some $x \in X$ and some uncountable $\mathcal{P}' \subset \mathcal{P}$, so $x \in \cap \mathcal{P}'$, and $x \in D(\mathcal{P})$. Hence $x \in \overline{P-\{x\}}$ for each $P \in \mathcal{P}'$. Thus $P-\{x\}$ is not a closed subset of X. Since P is a closed subset of sequential space X, there exists a sequence $\{y_n\}$ consisting of distinct points of $P-\{x\}$ such that $\{y_n\}$ converges to x. But $(\{x\} \cup \{y_n : n \in N\}) \cap D(\mathcal{P})$ is finite because $\{x\} \cup \{y_n : n \in N\}$ is compact and $D(\mathcal{P})$ is a discrete closed subspace of X by Lemma 2, thus $\{y_n : n \in N\} - D(\mathcal{P})$ is infinite. Let

$${y_n : n \in N} - D(\mathcal{P}) = {x_n : n \in N},$$

then sequence $\{x_n\}$ converges to x.

Now, for each $P \in \mathcal{P}'$, there exists a sequence $\{x(P,n)\}$ consisting of distinct points of $P - D(\mathcal{P})$ such that $\{x(P,n)\}$ converges to x. \mathcal{P}' is point-finite at x(P,n) because of $x(P,n)\in D(\mathcal{P})$, thus for any countable subfamily \mathcal{P}'' of \mathcal{P}' ,

$$\mathcal{P}'-\{Q\in\mathcal{P}':x(P,n)\in Q,P\in\mathcal{P}''\text{ and }n\in N\}$$

is still uncountable. By transfinite induction, take a subfamily $\{P_{\alpha} : \alpha < \omega_1\}$ of \mathcal{P}' such that $x(P_{\alpha,n}) \neq x(P_{\beta,m})$ when $\alpha \neq \beta$. Put

$$Y = \{x\} \cup \{x(P_{\alpha,n}) : \alpha < \omega_1, n \in N\},$$

then Y is a closed subspace of X because \mathcal{P} is HCP and $\{x\} \cup \{x(P_{\alpha}, n) : n \in N\} \subset P_{\alpha}$ for each $\alpha < \omega_1$. Obviously, Y is homeomorphic to S_{ω_1} , a contradiction.

Theorem 3. If a k-space X has a σ -HCP cs-network, then X is a cs- σ -space.

20 S. LIN

Proof. Since X has a σ -HCP cs-network, X is a σ -space. Thus each point of X is a G_{δ} -set of X, and X is a sequential space [6]. By Lemma 1 and Theorem 2, X has a σ -HCP closed k-network. Let $\cup \{\mathcal{P}_n : n \in N\}$ be a σ -HCP closed k-network, where each \mathcal{P}_n is an HCP family of closed subsets of X. We can assume that $\mathcal{P}_n \subset \mathcal{P}_{n+1}$. Put

$$\mathcal{F} = \bigcup \{ \mathcal{F}(\mathcal{P}_n) : n \in \mathbb{N} \}.$$

If K is a compact subset and U is an open subset of X with $K \subset U$, then $K \subset \cup \mathcal{P}' \subset U$ for some finite $\mathcal{P}' \subset \mathcal{P}_n$. Put

$$\mathcal{F}' = \{ \overline{P - D(\mathcal{P}_n)} : P \in \mathcal{P}' \} \cup \{ \{x\} : x \in K \cap D(\mathcal{P}_n) \},$$

then \mathcal{F}' is a finite subfamily of \mathcal{F} because $K \cap D(\mathcal{P}_n)$ is finite by Lemma 2, and $K \subset \cup \mathcal{F}' \subset U$. By Theorem 1, Lemma 2 and Lemma 3, \mathcal{F} is a σ -closure-preserving and point-countable closed k-network. Hence X is an \aleph -space by the proof of Theorem 2.2 in [5], and X is a cs- σ -space. This completes the proof of Theorem 3.

Corollary. If X is a Lašnev space, then X is an \aleph -space if and only if X has a σ -HCP cs-network.

The last theorem in this paper is on the decomposition of spaces having a σ -HCH k-network.

Theorem 4. If X has a σ -HCP k-network, then exists an \aleph -space Z of X such that X-Z is a σ -closed discrete subspace of X.

Proof. Let $\cup \{\mathcal{P}_n : n \in N\}$ be a σ -HCP k-network of X. We can assume that each \mathcal{P}_n is an HCP family of closed subsets of X and $X \in \mathcal{P}_n \subset \mathcal{P}_{n+1}$. For each $n \in N, x \in X$, put

$$\mathcal{P}_{n,x} = \{ P \in \mathcal{P}_n : x \in P \},$$

$$Y_n = \{x \in X : \cap \mathcal{P}_{n,x} = \{x\}\},\$$

then Y_n is a closed discrete subspace of X by Lemma 2.5 in [7]. Put

$$Z = X - \cup \{Y_n : n \in N\},\$$

then $\mathcal{P}_{n,x}$ is finite for each $x \in \mathbb{Z}$. In fact, suppose $\mathcal{P}_{n,x}$ is infinite. For each $m \in \mathbb{N}$, $\mathcal{P}_{m,x} - \{x\} \neq \emptyset$ because $x \in Y_m$. By inductive method we can choose a subset $\{x_i : i \geq n\}$ of X and a subfamily $\{P_i : i \geq n\}$ of \mathcal{P}_n such that $x_i \in P_i \cap (\cap \mathcal{P}_{i,x}) - \{x\}$. Let

$$V = X - \{x_i : i \ge n\},$$

then V is an open neighborhood of x in X, hence

$$x \in P \subset V \subset X - \{x_m\}$$

for some $m \geq n$ and $P \in \mathcal{P}_m$, a contradiction with $x_m \in \cap \mathcal{P}_{m,x}$. Thus each $\mathcal{P}_{n,x}$ is finite for $x \in \mathbb{Z}, n \in \mathbb{N}$. Put

$$\mathcal{F}_n = \{P \cap Z : P \in \mathcal{P}_n\},\$$

then $\cup \{\mathcal{F}_n : n \in N\}$ is a σ -locally finite k-network of Z. Therefore Z is an \aleph -space.

REFERENCES

- 1. D. Burke, R. Engelking and D. Lutzer, Hereditarily closure-preserving collections and metrization, Proc. AMS., 51 (1975), 483-488.
- 2. L. Foged, Characterizations of X-spaces, Pacific J. Math., 110 (1984), 59-63.
- 3. L. Foged, A characterization of closed images of metric spaces, Proc. AMS., 95 (1985), 487-490.
- 4. S. Lin, On a problem of K. Tamano, Questions and Answers in Gen. Top., 6 (1988), 99-102.
- 5. S. Lin, Mapping theorems on N-spaces, Top. Appl., 30 (1988), 159-164.
- 6. E. Michael, A quintuple quotient quest, Gen. Top. Appl., 2 (1972), 71-138.
- 7. A. Okuyama, On a generalization of Σ-spaces, Pacific J. Math., 42 (1972), 485-495.
- 8. Y. Tanaka, Decompositions of spaces determined by compact subsets, Proc. AMS., 97 (1986), 549-555.
- 9. Y. Tanaka, Point-countable covers and k-networks, Top. Proc., 12 (1987), 327-349.

DEPARTMENT OF MATHEMATICS, NINGDE TEACHERS' COLLEGE, NINGDE, FUJIAN 352100, P. R. CHINA.