A Note on Metrization Theorem*

Lin Shou (Ningde Teachers' College, Fujian, China)

Abstract. In this short note it is shown that there exists a regular and T_1 space with a σ -linearly hereditarily closure-preserving base which is not a metrizable space.

Throughout this paper, all spaces are assumed to be at least regular and T_1 . Metrizable problem occupies an important position in the study of the theory of topological spaces. In [1] it is shown that a space is metrizable if and only if it has a countable pseudocharacter and has a σ -linearly hereditarily closure-preserving base. The purpose of this short note is to generalize this result by showing that a space is metrizable if and only if it has a countable pseudo-character and has a σ -countably hereditarily closure-preserving base. We also give the following counterexamples:(1) there exists a space with a σ -linearly hereditarily closure-preserving base which is not of countable pseudo-character; (2) there exists a space with a σ -countably hereditarily closure-preserving base which has not any σ -linearly hereditarily closure-preserving base.

A collection \mathcal{P} of subsets of a space X is called hereditarily closure-preserving if, for each $Q(P) \subset P \in \mathcal{P}$, $\{Q(P) : P \in \mathcal{P}\}$ is closure-preserving; it is linearly hereditarily closure-preserving if \mathcal{P} is endowed with a linear order < such that every subcollection of \mathcal{P} having an upper bound with respect to < is hereditarily closure-preserving; it is countably herediatrily closure-preserving if each of its countable subcollection is hereditarily closure-preserving.

A hereditarily closure-preserving (respectively, linearly hereditarily closure-preserving, countably hereditarily closure-preserving) collection of subsets of a space is abbreviated to an HCP (respectively, LHCP, CHCP) collection. The following relations hold by [1, Lemma 3.5].

 σ – HCP collection $\Longrightarrow \sigma$ – LHCP collection $\Longrightarrow \sigma$ – CHCP collection.

First, we show a positive result.

Proposition 1 A space is a metrizable space if and only if it has a countable pseudo-character and has a σ -CHCP base.

Proof The necessity follows directly from the classical Nagata-Smirnov metrization theorem.

^{*} Received March 29, 1990. Research partly supported by the National Natural Science Foundation of China.

On the contrary, suppose that X has a countable pseudo-character and has a σ -CHCP base. By [2, Corollary 2.4], a space is a metrizable space if and only if it is a first countable space with a σ -CHCP base, to end the proof, it is sufficient to show that X is first countable. For each $p \in X$, if p is an isolated point of X, then p has a countable local base in X, if p is a limit point of X, then p has also a countable local base in X, since any CHCP collection of open subsets of X is point-finite at p by the proof of [3,Lemma 4]. Hence X is first countable, and accordingly it is a metrizable space. This completes the proof. \square

For an uncountable set X, let p be a particular point of X. X(p) is called a Fortissimo space^[4] if X is endowed with a Fortissimo topology as follows: for $F \subset X$, F is closed in X if and only if $p \in F$, or $|F| \leq \aleph_0$.

Proposition 2. Fortissimo space X(p) has the following properties:

- (1) X(p) is a regular and T^1 space.
- (2) X(p) has not any countable pseudo-character.
- (3) Any collection of subsets of X(p) is CHCP.
- (4) For any uncountable subset A of X(p), $\{\{x\}: x \in A\}$ is not HCP for X(p).

Proof. (1) Since $\{\{x\}: x \in X(p) - \{p\}\} \cup \{U \subset X(p): p \in U \text{ and } | X - U | \leq \aleph_0\}$ forms an open and closed base of X(p), X(p) is a regular and T_1 space.

- (2) For any sequence $\{G_n\}$ of open neighborhoods of the point p, we have $|X G_n| \le \aleph_0$ since $p \in G_n$. Then $|X \bigcap \{G_n : n < \omega\}| \le \aleph_0$, and accordingly $\bigcap \{G_n : n < \omega\} \ne \{p\}$. Hence the point p is not of countable pseudo-character. Therefore X(p) has not any countable pseudo-character.
- (3) Suppose that P is a collection of subsets of X(p). Let $\{P_n : n < \omega\}$ be a countable subcollection of P. For each $n < \omega$, take $Q_n \subset P_n$. Put $F = \bigcup \{\overline{Q_n} : n < \omega\}$. If $p \in \overline{Q_n}$ for some $n < \omega$, then $p \in F$, and F is closed in X, if $p \notin \overline{Q_n}$ for each $n < \omega$, then $|\overline{Q_n}| \leq \aleph_0$, so $|F| \leq \aleph_0$, and F is also closed in X. Hence P is CHCP.
- (4) Since $|A| > \aleph_0, p \in \overline{A \{p\}}$, so $A \{p\}$ is not closed in X, and $\{\{x\} : x \in A\}$ is not HCP for X(p). \square

In the second part of this note, we use Fortissimo spaces to construct two counterexamples on metriztion problem.

Example 1 σ -LHCP base \implies countable pseudo-character.

Take $X = \omega_1 + 1$. Let < denote the linear order on $\omega_1 + 1$. The set X is endowed with the Fortissimo topology to form a Fortissimo space $X(\omega_1)$. $X(\omega_1)$ has not any countable pseudo-character by Proposition 2. Put

$$\mathcal{B}_1 = \{\{\alpha\} : \alpha < \omega_1\},\$$

$$\mathcal{B}_2 = \{P_\alpha : \alpha < \omega_1\}, \text{ where } P_\alpha = \{\beta : \alpha \leq \beta < \omega_1 + 1\}.$$

Then $\mathcal{B}_1 \cup \mathcal{B}_2$ is a base of $X(\omega_1)$.

Define an order $<_1$ on \mathcal{B}_1 as follows:

$$P_{\alpha} <_1 P_{\beta} \text{ iff } \alpha < \beta.$$

Define an order $<_2$ on \mathcal{B}_2 as follows:

$$P_{\alpha} <_{2} P_{\beta}$$
 iff $\alpha < \beta$.

Then β_1 and β_2 are linear orders on $<_1$ and $<_2$ respectively, and they are LHCP collections by Proposition 2. Thus $X(\omega_1)$ has a σ -LHCP base.

Example 2 σ -CHCP base $\implies \sigma$ -LHCP base.

Take $Y = \omega_2 + 1$. Let < denote the linear order on $\omega_2 + 1$. The set Y is endowed with the Fortissimo topology to form a Fortissimo space $Y(\omega_2)$. $Y(\omega_2)$ has a σ -CHCP base by Proposition 2. If $Y(\omega_2)$ has a σ -LHCP base, let $\cup \{\mathcal{B}_n : n < \omega\}$ be a σ -LCHP base of $Y(\omega_2)$, where each $(\mathcal{B}_n, <_n)$ is LCHP. Since $\{\alpha\}$ is open in $Y(\omega_2)$ for each $\alpha < \omega_2$, there exists an $m < \omega$ and a subset A of $Y(\omega_2) - \{\omega_2\}$ such that $|A| = \aleph_2$ and $A = \{\{x\} : x \in A\} \subset \mathcal{B}_m$ Thus there is an uncountable subcollection A' of A such that A' has an upper bound with respect to $<_m$, and A' is HCP for $Y(\omega_2)$, a contradiction to Proposition 2.

References

- [1] Jiang Jiguang, On paracompactness and metrizability of topological spaces, Acta Math. Sinica, 29(1986),697-701.(in Chinese).
- [2] Lin Shou, (mod K) bases and paracompact p- spaces, Northeastern Math. J., (to appear)
- [3] D.K. Burke, R. Engelking and D. Lutzer, Hereditarily closure- preserving collections and metrization, Proc. Amer. Math. soc., 51(1975), 483-488.
- [4] L.A. Steen, and J.A. Seebach, Counterexamples in Topology (Second Edition), Springr-Verlag, New York, 1978.

度量化定理的一个注记

林 寿 (福建省宁德师范专科学校,352100)

本文证明存在不可度量化的正则空间使它具有 σ-线性遗传闭包保持基.