(mod K)-bases and Paracompact p-spaces

Lin Shou (林 寿)

(Department of Mathematics, Ningde Teachers' College, Fujian, 352100)

Abstract In this paper, it is shown that a T_1 and regular space is a paracompact p-space if and only if it is a k-space with a σ -countably hereditarily closure-preserving (mod K)-base.

Key Words (mod K)-base; Hereditarily Closure-preserving Collection; Paracompact p-space; k-space

§ 1. Introduction

Throughout this paper, all spaces are assumed to be at least T_1 and regular and N denotes the set of positive integers.

Since metric spaces play an important role in a multitude of fields of mathematics, one of the main questions in studying general topology is to search for a general metrizable condition for topological spaces. It has been fruitful in the research of this field since nineteen fifties. Some important results are that a topological space is a metrizable space if and only if it satisfies one of the following conditions:

- (1) X has a σ -locally finite base (Nagata-Smirnov metrization theorem, see [1], [2]);
- (2) X has a σ -hereditarily closure-preserving base (Burke-Engelking-Lutzer metrization theorem, see [3]);
- (3) X has countable pseudo-character and has a σ -linearly hereditarily closure-preserving base (Jiang metrization theorem, see $\lceil 4 \rceil$).

The perfect preimage of a metric space can be portrayed by paracompact p-spaces. Can the class of paracompact p-spaces be portrayed by open subset collections which have some particular properties? Michael^[5] portrayed the class of paracompact p-spaces by the concept of (modK)-bases and the concept of locally finite collections. In this paper, we obtain a weaker characterization of paracompact p-spaces in form by the concept of (modK)-bases and the concept of countably hereditarily closure-preserving collections.

Definition 1.1 A collection $\mathcal{P} = \{P_a : a \in A\}$ of subsets of a topological space X is called

Received July 25, 1989.

locally finite if every $x \in X$ has a neighborhood which intersects only finitely many $P_a \in \mathscr{P}$; it is closure-preserving if, for every subset $A' \subset A$, $\overline{\bigcup \{P_a: \alpha \in A'\}} = \bigcup \{\overline{P}_a: \alpha \in A'\}$; it is hereditarily closure-preserving if, for every subset $Q_a \subset P_a$, $\{Q_a: \alpha \in A\}$ is closure-preserving; it is linearly hereditarily closure-preserving (see [4]) if \mathscr{P} endows with a linear order < such that every subcollection of \mathscr{P} having an upper bound with respect to < is hereditarily closure-preserving; it is countably hereditarily closure-preserving (see [6]) if every its countable subcollection is hereditarily closure-preserving.

A locally finite (closure-preserving, hereditarily closure-preserving, linearly hereditarily closure-preserving, countably hereditarily closure-preserving) collection of subsets of a space is abbreviated to an LF (CP, HCP, LHCP, CHCP) collection. By Lemma 3. 5 of [4], an LHCP collection is either a σ -HCP collection or a CHCP collection, hence

$$\sigma$$
-LF $\Rightarrow \sigma$ -HCP $\Rightarrow \sigma$ -LHCP $\Rightarrow \sigma$ -CHCP.

Definition 1. 2^[5] A collection \mathscr{P} of open subsets of a space X is called a $(\operatorname{mod} K)$ -base for X, if there is a covering \mathscr{K} of X, which is composed of compact subsets and such that, if $K \subset U$ with $K \in \mathscr{K}$ and U open in X, then $K \subset P \subset U$ for some $P \in \mathscr{P}$.

§ 2. Auxiliary Propositions

Lemma 2.1 Every space with a σ -CP (mod K)-base is a paracompact space.

Proof Suppose X is a space with a σ -CP (modK)-base. Let $\mathscr P$ be a σ -CP (modK)-base for X with respect to $\mathscr K$ which is a covering of X and is composed of compact subsets. We know that a space is paracompact if and only if every directed open cover of the space has a σ -closure-preserving refinement by closed subsets whose interiors cover the space by Theorem 3. 4 of [7]. Suppose $\mathscr U$ is a directed open cover of X. Then there exist $U(K) \in \mathscr U$ and $P(K) \in \mathscr P$ such that $K \subset P(K) \subset \overline{P(K)} \subset U(K)$ for each $K \in \mathscr K$ by the regularity of X. Obviously, $\{\overline{P(K)}: K \in \mathscr K\}$ is a σ -closure-preserving refinement of $\mathscr U$ by closed subsets whose interiors cover X, and so X is a paracompact space.

Lemma 2.2^[8] If $\{P_{\alpha}: \alpha \in A\}$ is an HCP collection for X, then $\{\overline{P}_{\alpha}: \alpha \in A\}$ is also an HCP collection for X.

Lemma 2.3 If X is a k-space, then a CHCP collection for X is an HCP collection.

Proof Let \mathscr{P} be a CHCP collection for X. We can assume that \mathscr{P} is a collection of closed subsets for X by Lemma 2. 2. Put

$$Y = \{y \in X : \mathscr{D} \text{ is not point finite at } y\}.$$

Then $K \cap Y$ is finite for each compact subset K of X. In fact, if there exists $\{y_n : n \in N\} \subset K \cap Y$, by induction principle we can take $P_1 \in \mathscr{P}$, $P_{n+1} \in \mathscr{P} - \{P_i : i \le n\}$ such that $y_n \in P_n$ for each $n \in N$ because \mathscr{P} is not point finite at each y_n . So $\{y_n : n \in N\}$ is an infinite discrete subset of K, a contradiction.

Denote \mathscr{D} by $\{P_{\alpha}: \alpha \in A\}$. If \mathscr{D} is not an HCP collection, then there are $A' \subset A$ and a non-

empty closed subset Q_a of P_a for each $\alpha \in A'$ such that $\bigcup \{Q_a : \alpha \in A'\}$ is not closed in X, and so $K \cap (\bigcup_i \{Q_a : \alpha \in A'\})$ is not closed in K for some compact subset K of X because X is a k-space. For each $B \subset A'$, put

$$R(B) = K \cap (\bigcup \{Q_{\alpha} : \alpha \in A' - B\}).$$

Then

$$K \cap (\bigcup \{Q_a : \alpha \in A'\})$$

$$= (R(B) - Y) \bigcup (R(B) \cap Y) \bigcup (K \cap (\bigcup \{Q_a : \alpha \in B\})).$$

If B is a finite subset of A', then R(B)-Y is not closed in K, and so it is infinite. Take $z_1 \in R(\phi)-Y$ and put

$$A_1 = \{\alpha \in A' : z_1 \in Q_\alpha\}.$$

Then A_1 is a non-empty finite subset of A'. Take $z_2 \in R(A_1) - Y$ and put

$$A_2 = \{ \alpha \in A' - A_1 \colon z_2 \in Q_\alpha \}.$$

Then A_2 is a non-empty finite subset of A', $A_1 \cap A_2 = \phi$, and $z_1 \neq z_2$. By induction principle we can construct a subset $\{z_n : n \in N\}$ of X and a non-empty sequence $\{A_n\}$ of finite subsets of A' with $z_n \in \bigcap \{Q_a : \alpha \in A_n\}$ for each $n \in N$, where $A_n \cap A_m = \phi$ and $z_n \neq z_m$ when $n \neq m$. Take $a_n \in A_n$ for each $n \in N$. Then $z_n \in Q_n \cap P_{a_n}$, and so $\{z_n : n \in N\}$ is an infinite discrete subset of the compact subset K of X for $\{P_{a_n} : n \in N\}$ is HCP, a contradiction. Therefore $\mathscr P$ is an HCP collection of subset of X.

Corollary 2. 4 A space is a metrizable space if and only if it is a k-space with a σ -CHCP base.

Proof Necessity comes from the classic Nagata-Smirnov metrization theorem. By Lemma 2. 3 and Burke-Engelking-Lutzer metrization theorem, sufficiency is obvious.

§ 3. Characterizations of Paracompact p-spaces

Theorem 3. 1 The following properties of a space are equivalent:

- (1) X is a paracompact p-space;
- (2) X is a space with a σ -LF (mod K)-base;
- (3) X is a k-space and it satisfies any of the following conditions:
- (a) X has a σ -HCP (mod K)-base;
- (b) X has a σ -LHCP (mod K)-base;
- (c) X has a σ -CHCP (mod K)-base.

Proof In [5] Michael related that conditions (1) and (2) are equivalent, but he did not give proof.

 $(1)\Rightarrow(2)$: Suppose X is a paracompact p-space. Then there are a metric space Y and a perfect mapping $f: X \rightarrow Y$. Y has a σ -LF base \mathcal{B} for Y is a metric space. Put

$$\mathcal{K} = \{f^{-1}(y) : y \in Y\},\$$

$$\mathcal{D} = \{f^{-1}(B) : B \in \mathcal{D}\}.$$

Then \mathcal{K} is a covering of X and is composed of compact subsets, and \mathcal{P} is a σ -LF collection of open subsets of X. If $f^{-1}(y) \subset U$ with $y \in Y$ and U open in X, then $y \in Y - f(X - U)$, and so $y \in B \subset Y - f(X - U)$ for some $B \in \mathcal{P}$, hence $f^{-1}(y) \subset f^{-1}(B) \subset U$. Thus \mathcal{P} is a (mod K)-base of X with respect to \mathcal{K} .

 $(2)\Rightarrow(3)$: Suppose X has a σ -LF (mod K)-base. It is sufficient to show that X is a k-space. Let $\mathscr P$ be a σ -LF (mod K)-base of X with respect to $\mathscr H$ which is a covering of X and is composed of compact subsets. For each $x\in X$, there exists $K\in\mathscr H$ such that $x\in K$. Put

$$\mathscr{P}(K) = \{ P \in \mathscr{P} \colon K \subset P \}.$$

Then $\mathscr{P}(K)$ is countable. If $K \subset U$ with U open in X, then $K \subset P \subset U$ for some $P \in \mathscr{P}$; i. e., $K \subset P \subset U$ for some $P \in \mathscr{P}(K)$. So K has countable character. Thus we have shown that if $x \in X$, there exists a compact subset K of X such that $x \in K$ and K has countable character in X; i. e., X is of pointwise countable type. Therefore X is a k-space by 3. 3. I of [9].

(3) \Rightarrow (1): By Lemma 2.3, it is sufficient to show that if X is a k-space with a σ -HCP (mod K)-base, then X is a paracompact p-space. Since paracompact p-spaces are equivalent to paracompact $\omega\Delta$ -spaces by [10], it is sufficient to show that X is a $\omega\Delta$ -space by Lemma 2.1; i.e., X has a sequence $\{\mathcal{U}_n\}$ of open covers such that if $x_n \in st(x, \mathcal{U}_n)$ for each $n \in N$, then the sequence $\{x_n\}$ has a cluster point in X.

Let \mathscr{P} be a σ -HCP $(\operatorname{mod} K)$ -base of X with respect to \mathscr{K} which is a covering of X and is composed of compact subsets. Denote \mathscr{P} by $\bigcup \{\mathscr{P}_n \colon n \in N\}$, where each \mathscr{P}_n is an HCP collection of open subsets of X. We can assume that $X \in \mathscr{P}_n$ for each $n \in N$. For each $m \in N$, $P \in \mathscr{P}$, put

$$F_m(P) = \bigcup \{\overline{Q}: Q \in \mathscr{D}_m, \overline{Q} \subset P\}.$$

Then $F_m(P)$ is closed in X and $F_m(P) \subseteq P$. For each $m, k \in \mathbb{N}$, put

$$\mathcal{F}_{m,k} = \{F_m(P) : P \in \mathcal{P}_k\},$$

$$\mathcal{R}_{m,k} = \{R_{m,k}(x) : x \in X\},$$

where

$$R_{m,k}(x) = \bigcap \{ P \in \mathscr{D}_k : x \in F_m(P) \}$$
$$-\bigcup \{ F_m(P) : P \in \mathscr{D}_k, x \notin F_m(P) \}.$$

Then $\mathscr{F}_{m,k}$ is a CP collection of closed subsets of X, $\mathscr{R}_{m,k}$ is a covering of open subsets of X, and if $P \in \mathscr{P}_k$ and $x \in F_m(P)$, then $\mathscr{A}(x, \mathscr{R}_{m,k}) \subset P$. In fact, it is obvious that $\mathscr{F}_{m,k}$ is a CP collection of closed subsets of X. Since X is a k-space, the intersection of an HCP collection of open subsets of X is still open in X by Proposition 7 of [3]. Clearly $x \in R_{m,k}(x)$. So $\mathscr{R}_{m,k}$ is an open covering of X. Suppose $P \in \mathscr{P}_k$ and $x \in F_m(P)$. If $x \in R_{m,k}(y)$, then $y \in F_m(P)$ (otherwise, $x \in R_{m,k}(y) \cap F_m(P) \subset (X - F_m(P)) \cap F_m(P) = \emptyset$, a contradiction), and so $R_{m,k}(y) \subset P$, $\mathscr{A}(x, \mathscr{R}_{m,k}) \subset P$.

Now, for each $n \in N$, put

$$\mathscr{U}_{\bullet} = \bigwedge \{\mathscr{R}_{m,k} : m,k \leq n\}.$$

Then $\{\mathcal{U}_*\}$ is a sequence of open coverings of X. Suppose $x_* \in st(x, \mathcal{U}_*)$ for each $n \in N$, and

the sequence $\{x_n\}$ has no cluster point in X. Then $\{x_n: n \in N\}$ is a closed discrete subset of X. Take $K \in \mathcal{K}$ with $x \in K$. Thus $K \cap \{x_n: n \in N\}$ is finite, and so there is $i \in N$ such that $K \cap \{x_n: n \geqslant i\} = \emptyset$; i. e., $K \subset X - \{x_n: n \geqslant i\}$. Hence there exist $k \in N$ and $P \in \mathcal{P}_k$ such that $K \subset P$ $C \subset X - \{x_n: n \geqslant i\}$ because $X - \{x_n: n \geqslant i\}$ is open in X. Since X is a regular space, $K \subset Q \subset \overline{Q} \subset P$ for some $m \in N$ and $Q \in \mathcal{P}_m$, and so $x \in K \subset F_m(P)$. Take $j \geqslant \max\{k, m, i\}$. Then

$$x_j \in st(x, \mathcal{U}_j) \subset st(x, \mathcal{R}_{m,k}) \subset P \subset X - \{x_n : n \geq i\},$$

a contradiction. Therefore the sequence $\{x_n\}$ has a cluster point in X, and X is a $\omega \Delta$ -space. This completes the proof of the Theorem.

References

- [1] Nagata, J., On a necessary and sufficient condition of metrizability, J. Inst. Polytech. Osaka City Univ. Ser A, Math., 1(1950), 93—100.
- [2] Smirnov, Ju. M., A necessary and sufficient condition for metrizability of a topological space (in Russian), Dold. Akad. Nauk. SSSR, 77(1951), 197—200.
- [3] Burke, D. K., Engelking, R., Lutzer, D., Hereditarily closure-preserving collections and metrization, Proc. Amer. Math. Soc., 51(1975), 483—488.
- [4] Jiang Jiguang, On paracompactness and metrizability of topological spaces (in Chinese), Acta Math. Sinica, 29(1986), 607—701.
- [5] Michael, E., On Nagami's Σ-spaces and some related matters, Proc. Washington State Univ. Conf., (1969), 1—7.
- [6] Gao Guoshi, On the closure-preserving sum theorems (in Chinese), Acta Math. Sinica, 29(1986), 58—62.
- [7] Junnila, H. J. K., Metacompactness, paracompactness, and interior-preserving open covers, Trans. Amer. Math. Soc., 249(1979), 373—385.
- [8] Lin Shou, On a problem of K. Tamano, Questions and Answers Gen. Top., 6(1988), 99—102.
- [9] Engelking, R., General Topology, PWN, Warszawa, 1977.
- [10] Burke, D. K., On p-spaces and $\omega\Delta$ -spaces, Pacific J. Math., 35(1970), 285—296.

Edited by Qu Tianzhen