Q & A in General Topology, Vol. 9 (1991)

Note on k_R-spaces

Shou Lin

Department of Mathematics

Ningde Teachers' College

Ningde, Fujian 352100

P. R. China

Throughout this paper, all spaces are assumed to be at least $\mathbf{T}_{\mathbf{l}}$ and regular.

1 Spaces with G-HCP (modK)-bases

Since metric spaces play an important role in a multitude of the fields of mathematics, one of questions for study of general topology is to search for a general metrizable condition for topological spaces. Where some important results are following: A space X is a metrizable space if and only if it satisfies any of the following:

- (1) X has a o-discrete base (Bing metrization theorem).
- (2) X has a σ -locally finite base(Nagata-Smirnov metrization theorem).
 - (3) X has a 6-hereditarily closure-preserving base

(Burke-Engelking-Lutzer metrization theorem).

The perfect preimage of metric spaces can be characterized by paracompact p-spaces. Can the class of paracompact p-spaces be characterized by open subset families which has some particular properties?

E. Michael[5] characterized the class of paracompact p-spaces by the that of spaces with a \(\sigma-\text{locally finite}\) (modK)-base. It suggests the following question: Is a space with a \(\sigma-\text{hereditarily closure-preserving (modK)}\)-base a paracompact p-space? In[4], we proved that if condition of k-space was added, its answer is affirmative. In this section, we prove that condition of k-space can be omitted.

Definition 1.1 Call a collection $\mathcal{F} = \{P_{\alpha} : \alpha \in A\}$ of subsets of a space X hereditarily closure-preserving (abbre. HCP) if, for every subset $Q_{\alpha} \subset P_{\alpha}$, $\{Q_{\alpha} : \alpha \in A\}$ is closure-preserving.

Definition 1.2 Call a collection $\mathcal P$ of open subsets of a space X a (modK)-base for X, if there is a covering $\mathcal K$ of X by compact subsets such that, whenever KCU with KEK and U open in X, then KCPCU for some $P \in \mathcal P$.

Theorem 1.3 The following properties of a space are equivalent:

- (1) X is a paracompact p-space.
- (2) X has a \(\sigma'\)-discrete (modK)-base.
- (3) X has a \(\sigma \)-locally finite (modK)-base.
- (4) X has a σ -HCP (modK)-base.

Proof. (1) \Rightarrow (2). Suppose X is a paracompact p-space, then there are a metric space Y and a perfect mapping f from X onto Y. Y has a σ -discrete base \mathcal{B} . Put

$$\mathcal{H} = \{f^{-1}(y) : y \in Y\},$$

$$\mathcal{P} = \{f^{-1}(B) : B \in \mathcal{B}\},\$$

then ${\cal P}$ is a σ -discrete (modK)-base of X with respect to ${\cal K}$.

- $(2) \Rightarrow (3)$ and $(3) \Rightarrow (4)$ are obvious.
- $(4)\Rightarrow(1)$. Suppose X is a space with a σ -HCP (modK)-base. Let $\mathcal P$ be a σ -HCP (modK)-base of X with respect to $\mathcal K$ which is a covering of X by compact subsets. It is sufficient to show that X is a k-space because a k-space with a σ -HCP (modK)-base is a paracompact p-space by [4, Theorem 3.1].

For each $K \in \mathcal{K}$, we prove that K has countable character in X. Suppose K is not an open subset in X.

Let $q:X\to X/K$ be a natural quotient mapping. Put $P'=iP\in P$: $K\subset P$.

$$\mathcal{B} = \{q(P) : P \in \mathcal{P}'\},\,$$

then \mathcal{B} is a \mathcal{C} -HCP base of neighborhood of point q(K) in X/K, so \mathcal{B} is countable by [2, Theorem 6], and \mathcal{P}' is countable; i.e., K has countable character in X. Hence X is a space of pointwise countable type. This implies that X is a k-space. This completes the proof of the theorem.

Corollary 1.4 A space X is metrizable if and only if it has a \(\sigma - HCP \) base.

Proof. That every metric space has a σ -HCP base follows directly from the Nagata-Smirnov metrization theorem. If a space X has a σ -HCP base, X is a paracompact p-space by Theorem 1.3. Since X is a σ -space, it has a G_{δ} -diagonal, hence X is metrizable.

2 k_R-spaces with star-countable compact-k-networks

Definition 2.1 Call a collection \mathcal{P} of subsets of a space X star-countable if for any $P \in \mathcal{P}$ the collection $\{Q \in \mathcal{P} : Q \cap P \neq \emptyset\}$ is countable. \mathcal{P} is said to be a k-network for X, if $K \subset U$ with K compact and U open in X, then $K \subset U \mathcal{P}' \subset U$ for some finite

 $\mathcal{P}'\subset\mathcal{T}$. Call \mathcal{P} a compact-k-network for X, if \mathcal{P} is a k-network for X and every element of \mathcal{P} is compact in X.

Definition 2.2 A topological space X is called a k_R -space[6] if it is completely regular and if every f: $X \rightarrow R$, whose restriction to every compact $K \subset X$ is continuous, is continuous on X.

Clearly every completely regular k-space is a k_R -space. The converse is false[6]. E. Michael[6] proved that a k_R -space with countable compact-k-networks is a k-space.

In [3], we studied characterization of the images of locally compact metric spaces under R-quotient, ss-mappings, and obtained the following result.

Theorem 2.3 (1) A space X is a k_R -space with a locally countable compact-k-network if and only if X is the image of a locally compact metric space under a (compact-covering) R-quotient, ss-mapping.

(2) A space X is a k-space with a locally countable compact-k-network if and only if X is the image of a

locally compact metric space under a (compact-cover-ing) quotient, ss-mapping.

Here a continuous mapping $f:X\to Y$ of X onto Y is called an R-quotient mapping if for every mapping $g:Y\to R$ the continuity of gf implies the continuity of g. A continuous mapping $f:X\to Y$ of X onto Y is called a ss-mapping if for every $y\in Y$, there is a neighborhood V of y in Y such that $f^{-i}(V)$ is a separable subspace of X.

In view of the above theorem, the following question is posed in [3]: Is a k_R -space with a locally countable compact-k-network a k-space? In this section, this question is answered affirmatively by the following theorem.

Theorem 2.4 If k_R -space X has a star-countable compact-k-network, then X is a k-space with a locally countable compact-k-network and a σ -discrete compact-k-network.

Proof. Suppose $\mathcal P$ is a star-countable compact-k-network for X, where X is a k_R-space. By [1, Lemma 3.10], $\mathcal P$ can be expressed as $\mathcal P = \mathcal U \{\mathcal P_a : a \in A\}$ where each subcollection $\mathcal P_a$ is countable and $(\mathcal U \mathcal P_a) \cap (\mathcal U \mathcal P_b) = \emptyset$ whenever a \neq b. For each $a \in A$,

put $X_a = \bigcup \mathcal{P}_a$. We assert that X_a is open and closed in X. In fact, let $f: X \to R$ with $f(X_a) = \{0\}$, $f(X \setminus X_a) = \{1\}$. For arbitrary non-empty compact subset K of X, there is a finite $\mathcal{P}' \subset \mathcal{P}$ with $K \subset \mathcal{UP}'$. For each $b \in A$, put

$$\mathcal{P}_{b}' = \mathcal{P}' \cap \mathcal{P}_{b},$$

$$K_{b} = \mathcal{U} \mathcal{P}_{b}',$$

$$A' = \{b \in A : K_{b} \neq \emptyset\}.$$

Then K_b is compact in X, A' is finite and $K \subset U \{K_b: b \in A'\}$. By the definition of f, $f_{|K_b}$ is a constant mapping, so f is continuous on $U \{K_b: b \in A'\}$. Consequently f is continuous on K. Hence f is continuous on X because X is a k_R -space. Thus K_a is open and closed in X, and K_a : K_a

with a countable k-network if it is \(\sigma\)-compact, then it is a k-space[6]. And X is a k-space.

By Theorem 2.3 and Theorem 2.4, we obtain an interesting corollary as follows.

Corollary 2.5 The following properties of a space are equivalent:

- (1) X is an image of a locally compact metric space under a (compact-covering) R-quotient, ss-mapping.
- (2) X is an image of a locally compact metric space under a (compact-covering) quotient, ss-mapping.
- (3) X is a k-space or a k_R -space satisfying any of the following:
 - (a) X has a 6-discrete compact-k-network.
 - (b) X has a G-locally finite compact-k-network.
 - (¢) X has a locally countable compact-k-network.
 - (d) X has a \(\sigma \) locally countable compact-k-network.
 - (e) X has a star-countable compact-k-network.

The author thanks to Professor Y. Tanaka for his following result related with Theorem 2.4.

Result. The following are equivalent.

(1) X is a k_R -space having a star-countable cover ${\mathcal P}$ of compact subsets, where for each compact subset

K of X, K $\subset U\mathcal{P}'$ for some finite $\mathcal{P}'\subset\mathcal{P}$.

(2) X is the topological sum k_{ω} -spaces, here a space Z is k_{ω} if Z is the union of countably many compact subsets Z_n such that a subset $F \subset Z$ is closed in Z whenever $F \cap Z_n$ is closed in Z_n .

Proof. (2) \Rightarrow (1) is obvious. Suppose that (1) holds. Then, in view of the proof of Theorem 2.4, X is the topological sum of k_R -spaces X_a , a ϵ A, where each X_a has a countable cover \mathcal{P}_a of compact subsets such that each compact subset of X_a is contained in a finite union of elements of \mathcal{P}_a . (Such a space X_a is sometimes called hemicompact). Then each X_a is k_ω -space by a comment (p. 76) after the proof of Theorem 5.2.1 in [7]. Thus X is the topological sum of k_ω -spaces.

References

- 1. D. Burke, Covering properties, In: K. Kunen, J. Vaughan, eds., Handbook of Set-Theoretic Topology, Amsterdam, 1984. 347-422.
- 2. D. Burke, R. Engelking, D. Lutzer, Hereditarily closure-preserving collections and metrization, Proc. Amer. Math. Soc., 51(1975), 483-488.

- 3. S. Lin, On R-quotient, ss-mappings, Acta Math. Sinica, 34(1991), 7-11(Chinese).
- 4. S. Lin, (modK)-bases and paracompact p-spaces, Northeastern Math. J.(P. R. C.), 7(1991)
- 5. E. Michael, On Nagami's ∑-spaces and some related matters, Proc. Washington State Univ. Conf., 1969, 1-7.
- 6. E. Michael, On k-spaces, k_R -spaces and k(X), Pacific J. Math., 47(1973), 487-498.
- 7. R. A. McCoy, I. Ntantu, Topological properties of spaces of continuous functions, Lecture notes in Mathematics, Springer-Verlag, 1315, 1988.

Received January 15, 1991 Revised April 19, 1991