A DECOMPOSITION THEOREM FOR Σ^* -SPACES

SHOU LIN*

ABSTRACT. In this note it is shown that if f is a continuous closed mapping from a T_1, Σ^* -space X onto Y, then there is a σ -closed discrete subspace Z of Y such that $f^{-1}(y)$ is an ω_1 -compact subspace of X for each $y \in Y \setminus Z$.

We assume that all spaces are T_1 , and all mappings are continuous and onto.

In 1985, Y. Tanaka and Y. Yajima [4] obtained a decomposition theorem for Σ -spaces that every Σ -space X satisfies the following condition(*).

- (*) If f is a closed mapping form X onto Y, then there is a σ -closed discrete subspace Z of Y such that $f^{-1}(y)$ is an ω_1 -compact subspace of X for each $y \in Y \setminus Z$.
- J. Chaber [1] constructed a counterexample to show that $\Sigma^{\#}$ -spaces are not always satisfying the above condition (*). Since Σ -spaces are Σ^{*} -spaces, and Σ^{*} -spaces are $\Sigma^{\#}$ -spaces, it is a natural question whether Σ^{*} -spaces satisfy(*). Y. Tanaka and Y. Yajima [4] obtained only a weak form of decomposition theorem for Σ^{*} -spaces. The purpose of this note is to prove that Σ^{*} -spaces satisfy(*).

Recall basic definitions concerning Σ^* -spaces. Suppose that \mathcal{P} is a collection of subsets of a space X. \mathcal{P} is called hereditarily closure-preserving (abbre. HCP) if $\{H(P); P \in \mathcal{P}\}$ is closure-preserving for every subset $H(P) \subset P \in \mathcal{P}$. A space X is called a Σ^* -space (or, strong Σ^* -space) [3] if there is a covering \mathcal{K} of X by closed countable compact subsets (or, closed compact

^{*}Partly supported by the National Natural Science Foundation of China.

subsets) and a σ -HCP collection \mathcal{P} of closed subsets of X such that whenever $K \subset U$ with $K \in \mathcal{K}$ and U open in X, then $K \subset P \subset U$ for some $P \in \mathcal{P}$. The \mathcal{P} is called a σ -HCP closed (mod \mathcal{K})-network for X.

Lemma (4, Lemma 1.1) If P is an HCP collection of subsets of X, then

$$\{P_1 \cap P_2 \dots \cap P_n; P_i \in \mathcal{P}, i \leq n\}$$

is also HCP in X for each $N \in N$.

Theorem Σ^* -spaces satisfy (*).

Proof. Suppose that f is a closed mapping from a Σ^* -space X onto Y. Let \mathcal{K} be a covering of X by closed countable compact subsets, and let $\mathcal{P} = \bigcup \{\mathcal{P}_n : n \in \mathcal{N}\}$ be a σ -HCP closed (mod \mathcal{K})-network for X, where each \mathcal{P}_n is HCP in X. Here we can assume that \mathcal{P} is closed under finite intersections by Lemma, and $X \in \mathcal{P}_n \subset \mathcal{P}_{n+1}$. For each $n \in \mathcal{N}$, put

$$D_n = \{x \in X : \mathcal{P}_n \text{ is not point-finite at } x\},$$

then

(1) D_n is a σ -closed discrete subspace of X. In fact, for each $m \in N$, put

$$E_m = \{x \in X : \cap \{P \in \mathcal{P}_m : x \in P\} = \{x\}\},\$$

then E_m is a closed discrete subspace of X by [3, Lemma 2.5]. It is not difficult to check that $D_n \subset \bigcup \{E_m : m \in N\}$ (cf.[2]), hence D_n is σ -closed discrete in X. Put

$$Q_n = \{P \backslash D_n : P \in \mathcal{P}_n\},\,$$

and

$$Q = \bigcup \{Q_n : n \in N\},\,$$

then

(2) There are $m \geq n, F \in \mathcal{Q}_m$, and $G \subset D_m$ with $\cap \mathcal{F} = F \cup G$ for each finite $\mathcal{F} \subset \mathcal{Q}$ and $n \in N$.

In fact, let $\mathcal{F} = \{F_i : i \leq k\} \subset \mathcal{Q}$, we might as well grant $\cap \mathcal{F} \neq \emptyset$, and there are $n_i \in N, P_i \in \mathcal{P}_{n_i}$ with $F_i = P_i \setminus D_{n_i}$ and $n_i \leq n_{i+1}$, then $\cap \mathcal{F} = \cap \{P_i : i \leq k\} \setminus D_{n_k}$, and $\cap \{P_i : i \leq k\} \setminus D_{n_k}$, and $\cap \{P_i : i \leq k\} \setminus D_{n_k}$

k = P for some $m \ge \max\{n_k, n\}, P \in \mathcal{P}_m$ because \mathcal{P} is closed under finite intersections. Put

$$F = P \setminus D_m$$
, and $G = P \cap (D_m \setminus D_{n_k})$, then $F \in \mathcal{Q}_m, G \subset D_m$ and $\cap \mathcal{F} = F \cup G$. For each $n \in N$, put

$$Z_n = f(D_n) \cup (\bigcup \{f(Q) \cap f(Q') : Q, Q' \in Q_n, \text{ and } F(Q) \cap f(Q') \text{ is finite}\}).$$

Since Q_n is HCP in X, $\{f(Q): Q \in Q_n\}$ is HCP in Y. Thus Z_n is σ -closed discrete in Y by (1) and Lemma. Put

$$Z = \bigcup \{Z_n : n \in N\},\,$$

then Z is σ -closed discrete in Y. Take a $y \in Y \setminus Z$, then (3) $\{Q \in \mathcal{Q}_n : Q \cap f^{-1}(y) \neq \emptyset\}$ is finite.

Assume the contrary, then there is an $m \in N$ and a sequence $\{Q_n\}$ of distinct members of Q_m such that $Q_n \cap f^{-1}(y) \neq \emptyset$. Pick an $x \in f^{-1}(y)$, then $x \notin X \setminus D_n$ for each $n \in N$, put

$$R_n = \cap \{Q \in \mathcal{Q}_n : x \in Q\}.$$

Since Q_n is point-finite on X there are a $k_n \in N, F_n \in Q_{k_n}$ and $G_n \subset D_{k_n}$ with $m \leq k_n < k_{n+1}$ and $R_n = F_n \cup G_n$ by (2). Put

$$F'_n = Q_n \backslash D_{k_n},$$

$$G'_n = Q_n \cap D_{k_n},$$

then $F'_n \in \mathcal{Q}_{k_n}, G'_n \subset D_{k_n}$, and $Q_n = F'_n \cup G'_n$. Since $y \in f(R_n) \cap f(Q_n) \setminus Z = f(F_n) \cap f(F'_n) \setminus Z$, $f(F_n) \cap f(F'_n)$ is an infinite set. So we can choose a sequence $\{y_n\}$ of distinct points in Y such that $y_n \in f(F_n) \cap f(F'_n)$. Pick $p_n \in F_n \cap f^{-1}(y_n)$, and $q_n \in F'_n \cap f^{-1}(y_n)$.

Suppose that the sequence $\{p_n\}$ has not any cluster point in X. Take a $K \in \mathcal{K}$ with $x \in K$, then there is an $i \in N$ such that $K \cap \{p_n : n \geq i\} = \emptyset$, thus $x \in K \subset P \subset X \setminus \{p_n : n \geq i\}$ for some $j \geq i, P \in \mathcal{P}_j$. Since $y \in Y \setminus Z, x \notin D_j$, then $x \in P \setminus D_j \in \mathcal{Q}_j$, hence $R_j \subset P \setminus D_j$, so $p_j \in F_j \subset R_j \subset P \setminus D_j \subset X \setminus \{p_n : n \geq i\}$, a contradiction. Consequently, the sequence $\{p_n\}$ has a cluster point in X, and the sequence $\{y_n\}$ also has a cluster

point in Y. On the other hand, since $q_n \in F'_n \subset Q_n \in \mathcal{Q}_m$ for each $n \in N$, the sequence $\{q_n\}$ has not any cluster point in X so the sequence $\{y_n\}$ has not any cluster point in Y either, a contradiction. (3) holds. By

$$y \in Y \setminus Z, f^{-1}(y) \subset X \setminus \cup \{D_n : n \in N\},$$

thus

$$\{f^{-1}(y) \cap P : P \in \mathcal{P}\} = \{f^{-1}(y) \cap Q : Q \in \mathcal{Q}\},\$$

therefore it is a countable closed (mod \mathcal{K}')-network from (3), where $\mathcal{K}' = \mathcal{K}_{|f^{-1}(y)}$. Hence $f^{-1}(y)$ is an ω_1 -compact subspace of X by [4, Lemma 1.2].

Corollary If f is a closed mapping from a strong Σ^* -space X onto Y, then there is a σ -closed discrete subspace Z of Y such that $f^{-1}(y)$ is Lindelöf for each $y \in Y \setminus Z$.

Proof. An ω_1 -compact strong Σ^* -space is a space with a countable (mod \mathcal{K})-network with respect to \mathcal{K} by compact subsets. A space with a countable (mod \mathcal{K})-network with respect to \mathcal{K} by compact subsets is Lindelöf.

REFERENCES

- 1. J. Chaber, Generalizations of Lašnev's theorem, Fund. Math. 119 (1983), 85-91.
- 2. S. Lin, Spaces with σ -HCP pseudobases, Notheastern Math. J. (China), 6 (1990), 287-290.
- 3. A. Okuyama, On a generalization of Σ -spaces, Pacific J. Math. 42 (1972), 485-495.
- 4. Y. Tanaka, Y. Yajima, Decompositions for closed maps, Topology Proc. 10 (1985), 399-411.

Ningde Teachers' College Ningde, Fujian 352100 P.R. China