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G-methods and G-continuity for real functions are induced by changing the 
definition of the convergence of sequences on the set of real numbers. In this paper we 
introduce the concepts of G-methods, G-submethods and G-topologies on arbitrary 
sets and the related notion of G-continuity. We investigate operations on subsets that 
deal with G-hulls, G-closures, G-kernels and G-interiors, and we study topological 
spaces that are G-sequential spaces, G-Fréchet spaces or G-topologizable spaces. The 
G-methods on first-countable topological groups and several convergence methods 
on topological spaces are extended and studied in a unified way. In particular, several 
results for G-methods on first-countable topological groups are improved.

© 2016 Elsevier B.V. All rights reserved.

1. G-methods in arbitrary sets

Sequential convergence is an important research object in topology and analysis. On the one hand, con-
vergence is closely related to continuity, compactness and other related properties. On the other hand, it 
has played a fundamental role in mathematics and its applications. Besides the ordinary convergence of 
sequences, there exists a wide variety of convergence types that are very important not only in pure mathe-
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matics but also in other branches of science involving mathematics especially in information theory, biological 
science and dynamical systems. We mention, for example, A-convergence of a matrix method in summability 
theory, almost convergence in functional analysis, Cesàro convergence and statistical convergence in real 
analysis [7]. Based on several kinds of convergence properties in real analysis, Connor and Grosse-Erdmann 
[7] introduced G-methods defined on a linear subspace of the vector space of all real sequences, G-convergence 
on real spaces and G-continuity for real functions, studied the relationship among G-continuous functions, 
linear functions and continuous functions, established the dichotomy theorem of G-continuity and extended 
several known results in the literature. Çakallı [4–6] extended the concepts to topological groups satisfying 
the first axiom of countability, defined G-sequential compactness and G-sequential connectedness. At the 
same time, he also discussed G-sequential continuity by means of G-sequential closures and G-sequentially 
closed sets. Recently, Mucuk and Şahan [16] have introduced the notions of G-sequentially open sets and 
G-sequential neighborhoods of first-countable topological groups, studied the operations of G-sequentially 
closed sets and G-sequentially open sets, and investigated G-sequential continuity in topological groups.

There have been a number of similar investigations that replace the usual definition of sequential con-
vergence with one of a variety of other definitions that is typically related to statistical convergence. As 
a generalization of convergence, statistical convergence is a special case of G-methods. The notion of sta-
tistical convergence for real sequences was introduced by Fast [11] in 1951. Çakallı [3] discussed statistical 
convergence in first-countable topological groups. Di Maio and Kočinac [9] defined statistical convergence 
in topological spaces, introduced statistically sequential spaces and statistically Fréchet spaces, and consid-
ered their applications in selection principles theory, function spaces and hyperspaces. Liu, Tang and Lin 
[15] further studied statistically sequentially continuous mappings in topological spaces. Topological spaces 
are not only the abstract version of the space of all real numbers but also the basis of topological groups. 
The concepts of convergence, sequential continuity and sequential compactness essentially only relate to 
open or closed sets in a topological space. Motivated by the investigations in statistical convergence de-
scribed above we try to introduce G-convergence and G-methods in arbitrary sets, study the operations of 
G-hulls, G-closures, G-kernels and G-interiors, discuss the G-generalized topology induced by G-methods, 
and establish some conditions implying G-continuity in topological spaces, or even in arbitrary sets.

We obtain conditions for the coincidence of closures and G-closures, interiors and G-interiors in topological 
spaces, discuss characterizations, hereditary properties and mapping properties of G-sequential spaces and 
G-Fréchet spaces, compare the topology of a topological space and the family of all G-open sets on the 
space, and give the mutual relationship between continuity and G-continuity. These show that G-methods 
on topological groups and sequential convergence methods on topological spaces can be treated in a unified 
way. Some results for G-methods on first-countable topological groups are extended and improved. Thus 
G-methods really become a method to study convergence and continuity in general topology. Although 
some proofs of the results in this paper are not difficult, and the questions considered in topological spaces 
lose the properties of algebraic operations, they are more general. We believe that this work, especially in 
G-continuity, will have a positive impact on future research and applications.

In the sequel of this section, we introduce G-methods and G-convergence on arbitrary sets. Let X be a 
set, s(X) denote the set of all X-valued sequences, i.e., x ∈ s(X) if and only if x = {xn}n∈N is a sequence 
with each xn ∈ X. If f : X → Y is a mapping, then f(x) = {f(xn)}n∈N for each x = {xn}n∈N ∈ s(X). 
If X is a topological space, the set of all X-valued convergent sequences is denoted by c(X), and we put 
limx = lim

n→∞
xn for any x = {xn}n∈N ∈ c(X). All topological spaces are assumed to satisfy the T2 separation 

property.

Definition 1.1. Let X be a set.

(1) A method on X is a function G : cG(X) → X defined on a subset cG(X) of s(X). A sequence x =
{xn}n∈N in X is said to be G-convergent to l ∈ X if x ∈ cG(X) and G(x) = l.
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(2) Let X be a topological space.
(2.1) A method G : cG(X) → X is called regular if c(X) ⊂ cG(X) and G(x) = limx for each x ∈ c(X).
(2.2) A method G : cG(X) → X is called subsequential if, whenever x ∈ cG(X) is G-convergent to 

l ∈ X, then there exists a subsequence x′ ∈ c(X) of x with limx′ = l.

Firstly, Connor and Grosse-Erdmann [7] described G-methods and related concepts in the space of all real 
numbers. Subsequently, Çakallı [4] extended these concepts to first-countable topological groups. Inspired 
by their work, we discuss these methods in arbitrary sets.

We allow that cG(X) = ∅ for a method G in a set X. The definition of G-methods and G-convergence 
does not involve a topology of a set X. It is only by the notions of regular and subsequential methods that 
a link is established between G-convergence and convergence in the topology of a topological space X. On 
the other hand, because X is only a set or a topological space, cG(X) and G are not required to be a group 
or a homomorphic mapping in Definition 1.1, respectively.

Readers may refer to [10] for some terminology unstated here.

2. G-hulls and G-closures

As a generalization of the concept of closures in topological spaces, G-hulls and G-closures are essential 
concepts in G-methods.

A subset A of a topological space X is called a sequentially closed set of X if, whenever x ∈ s(A) ∩ c(X), 
then limx ∈ A [13].

Definition 2.1. Let X be a set, and G be a method on X. A subset A of X is called a G-closed set of X if, 
whenever x ∈ s(A) ∩ cG(X), then G(x) ∈ A.

Remark 2.2. The appropriate choice of terminology is important. The notion in Definition 2.1 was called 
a G-closed set for the real line in [7], and a G-sequentially closed set for first-countable topological groups 
in [4]. Since the definition of G already contains the fact that only sequences are involved, “sequentially” in 
G-sequentially closed sets seems redundant, so we choose the terminology of G-closed sets. In the sequel of 
this paper, the terminology related to G-methods does not usually say “G-sequentially” or “G-sequential” 
except for Definition 5.1(1).

The following proposition is obvious.

Proposition 2.3. If G is a method on a set X, the intersection of any family of G-closed sets in X is G-closed.

Suppose X is a topological space and A ⊂ X. The sequential closure of A is defined as the set {limx :
x ∈ s(A) ∩ c(X)}, and it is denoted by [A]seq [1, p. 13].

Definition 2.4. Let X be a set, G be a method on X and A ⊂ X.

(1) The G-hull of A is defined as the set {G(x) : x ∈ s(A) ∩ cG(X)}, and the G-hull of A is denoted by 
huG(A) or [A]G.

(2) The G-closure of A is defined as the intersection of all G-closed sets containing A, and the G-closure of 
A is denoted by clG(A) or AG.

Remark 2.5. (1) The G-hull of a set A was used in [7, p. 102] and was denoted by A
G, and it was called the 

G-sequential closure of A in [4, p. 596].
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(2) It follows from Proposition 2.3 that the G-closure of a set A is the smallest G-closed set containing A. 
This is quite similar to the property of the closure of a set in a topological space.

(3) The most important properties of the closure operator in topological spaces are given by the Ku-
ratowski axioms. It is easy to see that [A]seq ∪ [B]seq = [A ∪ B]seq for each A, B ⊂ X. Unfortunately, 
[A]G ∪ [B]G = [A ∪B]G or AG ∪B

G = A ∪B
G is not always true, see Example 2.14(1). In fact, J.L. Kelley 

had noticed this, and pointed out [14, p. 109]: “However, the really damaging fact is that the sequential 
closure of a set may fail to be sequentially closed; sequential closure is not a Kuratowski closure operator.”

Obviously, G(s(A) ∩cG(X)) = [A]G, A ⊂ [A]seq ⊂ A, and A is sequentially closed if and only if [A]seq ⊂ A

in a topological space X.

Proposition 2.6. Let G be a method on a set X and A ⊂ X. The following are equivalent.

(1) A is G-closed.
(2) [A]G ⊂ A.
(3) A

G ⊂ A, i.e., AG = A.

Proof. (1) ⇔ (2) by Definition 2.1, and (1) ⇔ (3) by Definition 2.4(2) and Proposition 2.3. �
Thus AG

G

= A
G for each A ⊂ X. But, it is possible that [[A]G]G 	= [A]G, see Example 2.13(3).

Corollary 2.7. Let G be a method on a set X. Then [A]G ⊂ A
G for each A ⊂ X.

Proof. A
G is G-closed by Proposition 2.3. It follows from A ⊂ A

G and Proposition 2.6 that [A]G ⊂ [AG]G ⊂
A

G. �
Generally speaking, A ⊂ [A]G or [A]G = A

G is not always true. We may not even have X = [X]G, see 
Example 2.13(1).

Next, we discuss the relations between the closed sets and the G-closed sets in topological spaces.
For a topological space X and a sequence x = {xn}n∈N ∈ s(X), let

[x] = {xn : n ∈ N} ∪ {l ∈ X : l is an accumulation point of x}.

Lemma 2.8. Let G be a method on a topological space X. The following are equivalent.

(1) [A]G ⊂ A for each A ⊂ X.
(2) A

G ⊂ A for each A ⊂ X.
(3) Every closed set in X is G-closed.
(4) If x ∈ s(A) ∩ cG(X), then G(x) ∈ [x] for each A ⊂ X.

Proof. (1) ⇒ (4). For each A ⊂ X, let x = {xn}n∈N ∈ s(A) ∩ cG(X) and l = G(x). We can assume that 
l 	= xn for each n ∈ N. For each m ∈ N, by condition (1), we have that

l ∈ [{xn : n ∈ N}]G ⊂ {xn : n ∈ N} = {xn : n ≤ m} ∪ {xn : n > m},

so l ∈ {xn : n > m}. Thus l ∈
⋂

m∈N
{xn : n > m}, and l is an accumulation point of x. Thus G(x) ∈ [x].

(4) ⇒ (3). Suppose that A is a closed set in X. If l ∈ [A]G, then there exists an x ∈ s(A) ∩ cG(X) with 
G(x) = l. By condition (4), we know that G(x) ∈ [x] ⊂ A = A. So [A]G ⊂ A, i.e., A is G-closed in X by 
Proposition 2.6.
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(3) ⇒ (2). Let A ⊂ X. Because A is G-closed by condition (3), AG ⊂ A by Definition 2.4(2).
(2) ⇒ (1) by Corollary 2.7. �
The following are the main results in this section.

Theorem 2.9. Let G be a method on a topological space X. The following are equivalent.

(1) For each A ⊂ X, A = A
G.

(2) For each A ⊂ X, the set A is closed if and only if it is G-closed.

Proof. (1) ⇒ (2). For each A ⊂ X, suppose A = A
G. It follows from Lemma 2.8 that each closed set in X

is G-closed. On the other hand, if A is G-closed in X, then A = A
G = A, thus A is closed in X.

(2) ⇒ (1). Suppose that a subset A of X is closed if and only if it is G-closed. For any A ⊂ X, we 

have that AG ⊂ A by Lemma 2.8. Since A
G is always G-closed, AG is closed, A ⊂ A

G. This shows that 
A = A

G. �
Theorem 2.10. Let G be a method on a topological space X. The following are equivalent.

(1) For each A ⊂ X, A = [A]G.
(2) For each A ⊂ X, A = A

G = [A]G.
(3) For each A ⊂ X, A ⊂ [A]G, and A is closed if and only if it is G-closed.
(4) For each A ⊂ X, A ⊂ [A]G, and if A is closed, then it is G-closed.
(5) For each A ⊂ X, A ⊂ [A]G, and if x ∈ s(A) ∩ cG(X), then G(x) ∈ [x].

Proof. (1) ⇒ (3). For each A ⊂ X, suppose A = [A]G. If A is a closed set in X, then [A]G = A = A, so A
is G-closed by Proposition 2.6. On the other hand, if A is a G-closed set in X, then [A]G ⊂ A ⊂ A = [A]G, 
thus A = A, i.e., A is closed in X.

It can easily be obtained that (3) ⇒ (2) ⇒ (4) ⇒ (5) ⇒ (1) by Theorem 2.9, Corollary 2.7 and 
Lemma 2.8. �

Examples 2.13(2) and 2.13(3) show that the condition “A = A
G for each A ⊂ X” and the condition 

“AG = [A]G for each A ⊂ X” in a topological space X do not imply each other.

The following lemma is easy to check.

Lemma 2.11. Let X be a topological space.

(1) If G is a regular method on X, then [A]seq ⊂ [A]G for each A ⊂ X. Thus, every G-closed set of X is 
sequentially closed.

(2) If G is a subsequential method on X, then [A]G ⊂ [A]seq for each A ⊂ X. Thus, every sequentially 
closed set of X is G-closed.

As a result, if G is a regular subsequential method on a topological space X, then [A]G = [A]seq for each 
A ⊂ X. It shows that sequentially closed sets coincide with G-closed sets in the topological space X.

Let G be a method on a set X. G is said to satisfy a cofinal condition if x = {xn}n∈N ∈ cG(X), 
y = {yn}n∈N ∈ s(X) and there exists an m ∈ N such that xn = yn for each n > m, then y ∈ cG(X)
and G(x) = G(y). If G is a regular method on a topological group X in the sense of Çakallı [4], the 
method G satisfies the cofinal condition on X. Indeed, let cG(X) be a subgroup of the group s(X), and 
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G : cG(X) → X be a homomorphism. Suppose that x = {xn}n∈N ∈ cG(X), y = {yn}n∈N ∈ s(X) and there 
exists an m ∈ N such that xn = yn if n > m. Then lim(x · y−1) = e (the unit of the topological group X). 
Since G is a regular method, it follows that x ·y−1 ∈ cG(X) and G(x ·y−1) = e. Because cG(X) is a group, 
y = (x−1 · (x · y−1))−1 ∈ cG(X), by the homomorphism of G, then G(x) = G(y).

Proposition 2.12. Let X be a first-countable topological space, and G be a method satisfying the cofinal 
condition on X. Then G is a subsequential method on X if and only if [A]G ⊂ [A]seq for each A ⊂ X.

Proof. It follows from Lemma 2.11(2) that we need only show the sufficiency. Suppose that [A]G ⊂ [A]seq
for each A ⊂ X. Put x = {xn}n∈N ∈ cG(X) and G(x) = l ∈ X. If U is an open neighborhood of l in X, 
we claim that U must contain infinitely many terms of x. If it is not the case, there exists an m ∈ N with 
U ∩ {xn : n > m} = ∅. Put A = {xn : n > m}. Then U ∩ A = ∅, hence l /∈ A. On the other hand, put 
y = {yn}n∈N such that yn = xm+1 if n ≤ m; and yn = xn if n > m. Since the method G satisfies the cofinal 
condition, y ∈ cG(X) and G(x) = G(y) ∈ [A]G ⊂ [A]seq ⊂ A, and l ∈ A, which is a contradiction.

Because X is a first-countable space, let {Ui}i∈N be a decreasing base of open neighborhoods of l in X. 
Then each Ui contains infinitely many terms of x, thus there exists a subsequence x′ = {xni

}i∈N of x such 
that each xni

∈ Ui, hence x′ converges to l in X. Therefore, G is a subsequential method on X. �
Example 2.13(2) shows that the cofinal condition of the method G in Proposition 2.12 cannot be omitted.

Example 2.13. G-hulls and G-closures.
(1) There exists a non-regular method G on a topological space X such that every G-closed set in X is 

closed.
Let X be the set Z of all integers endowed with the discrete topology. Put cG(X) = s(X), and G :

cG(X) → X is defined by G(x) = 0 for each x ∈ cG(X). Then G is a method on X. It is obvious that each 
G-closed set in X is closed, because X is a discrete space. Although c(X) ⊂ cG(X), G is not regular, even 
X = [X]G is not satisfied. Indeed, [X]G = {0}.

For any non-empty subset A of X, we have that [A]G = {0}, thus A is G-closed if and only if 0 ∈ A, and 

A
G = {0} ∪A.
(2) There exists a non-subsequential method G on a topological space X such that [A]G ⊂ [A]seq for each 

A ⊂ X.
Let X be a non-discrete first-countable space. A method G : s(X) → X on X is defined by G(x) = x1

for each x = {xn}n∈N ∈ s(X). Obviously, the method G does not satisfy the cofinal condition on X. It 
is easy to see that, for each A ⊂ X, [A]G = A = A

G ⊂ [A]seq, thus A is G-closed. The method G is not 
subsequential, so the converse of Lemma 2.11(2) does not hold. Since X is non-discrete, there exists a subset 
A of X such that A 	= A = A

G.
(3) There exists a topological space X so that for the usual convergence method G on X one has that 

A = A
G for each A ⊂ X, but AG 	= [A]G for some A ⊂ X.

Let X = {0} ∪
⋃

i∈N
Xi, where Xi = {1/i} ∪ {1/i + 1/k : k ∈ N, k ≥ i2} for each i ∈ N; suppose that X

is endowed with the following topology.
(3.1) Each point of the form 1/i + 1/j is isolated.
(3.2) Each neighborhood of each point of the form 1/i contains a set of the form {1/i} ∪{1/i +1/k : k ≥ j}, 

where j ≥ i2.
(3.3) Each neighborhood of the point 0 contains a set obtained from X by removing a finite number of 

Xi’s and a finite number of points of the form 1/i + 1/j in all the remaining Xi’s.
The topological space X is called Arens’ space and is denoted by S2 [10, Example 1.6.19]. Let G be 

the ordinary convergence method on X. Then a subset A of X is closed if and only if it is sequentially 



S. Lin, L. Liu / Topology and its Applications 212 (2016) 29–48 35
closed, i.e., it is G-closed, thus A = A
G by Theorem 2.9. Let A = {1/i + 1/k : i, k ∈ N, k ≥ i2}. Then 

[A]G = X \ {0} 	= X = [[A]G]G = A
G. �

Example 2.14. G-closed sets, closed sets and sequentially closed sets.
(1) The union of two G-closed sets is not always G-closed.
Connor and Grosse-Erdmann [7] gave an example as follows. Let R be the set of all real numbers endowed 

with the usual topology. Put

cG(R) = {{xn}n∈N ∈ s(R) : {xn + xn+1}n∈N ∈ c(R)}.

Define G : cG(R) → R by G(x) = lim
n→∞

xn+xn+1
2 for each x = {xn}n∈N ∈ cG(R). Then G is a regular method 

on R.
Let A = {0} and B = {1}. Then [A]G = A

G = {0}, [B]G = B
G = {1}, and [A ∪ B]G = {0, 12 , 1}, 

so A and B are G-closed in R, but A ∪ B = {0, 1} is not G-closed, and [A]G ∪ [B]G 	= [A ∪ B]G. Since 

[[A ∪B]G]G = {0, 14 , 
1
2 , 

3
4 , 1}, the set [A ∪B]G is not G-closed in R. It can be checked that A ∪B

G = [0, 1], 
and A

G ∪B
G 	= A ∪B

G.
(2) Closed sets are not always G-closed.
In the above (1), the set A ∪B is a closed set in R, but A ∪B is not G-closed. This shows that G is not 

a subsequential method on R by Lemma 2.11(2), and [A ∪B]G 	⊂ A ∪B.
(3) G-closed sets are not always closed.
The topological space X and the method on X are defined in Example 2.13(2). Then, for each A ⊂ X, 

[A]G = A, thus A is G-closed, but it is not always closed in X.
(4) G-closedness and sequential closedness do not imply each other.
Since closed sets coincide with sequentially closed sets in a first-countable space, examples (2) and (3) 

above also show that G-closedness and ordinary closedness do not imply each other in general. �
3. G-kernels and G-interiors

In this section we discuss the dual concepts of G-hulls and G-closures: G-kernels and G-interiors.
A subset A of a topological space X is called sequentially open [13] if X \A is sequentially closed in X.

Definition 3.1. Let X be a set and G be a method on X.

(1) A subset A of X is called a G-neighborhood of a point x ∈ X if there exists a G-open set U with 
x ∈ U ⊂ A.

(2) A subset A of X is called G-open if X \A is G-closed in X.

Mucuk, Şahan [16] proved the following proposition on first-countable topological groups. In fact, it is 
still true on arbitrary sets.

Proposition 3.2. Let G be a method on a set X.

(1) The union of any family of G-open sets of X is G-open.
(2) For each A ⊂ X, the set A is G-open in X if and only if A is a G-neighborhood of each point in A.

We know that the interior of a set in a topological space coincides with the complement of the closure of 
the complement of the set, and the interior of a set in a topological space is also the union of all open sets 
contained in the set. Based on the above knowledge, the following notions for G-methods are introduced.
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Definition 3.3. Let G be a method on a set X and A ⊂ X.

(1) The G-kernel of A is defined as the set

{l ∈ X : there is no x ∈ s(X \A) ∩ cG(X) with l = G(x)},

and the G-kernel of A is denoted by kerG(A) or (A)G.
(2) The G-interior of A is defined as the union of all G-open sets contained in A, and the G-interior of A

is denoted by intG(A) or A◦G.

Remark 3.4. (1) The G-kernel of a set seems to be unnatural. But, the definition ensures that the formula 
(A)G = X\[X\A]G holds, see Theorem 3.5(1). A geometric meaning of G-kernels is given in Proposition 3.12
and Remark 3.13.

(2) In Example 2.13(1), (∅)G = X \ {0} 	⊂ ∅ = ∅◦G.
(3) It follows from Proposition 3.2(1) that the G-interior A◦G of a set A is the largest G-open set contained 

in A.
(4) The G-interior of a set A of a first-countable topological group was defined and denoted by A◦G in 

[16, Definition 2.7], where it was called G-sequential interior.

The relationship between the G-kernels (resp. G-interiors) and the G-hulls (resp. G-closures) of spaces is 
established in the following theorem.

Theorem 3.5. Let G be a method on a set X and A ⊂ X. Then

(1) (A)G = X \ [X \A]G.
(2) A◦G = X \X \AG

.

Proof. (1) is true by Definition 3.3(1). Since A◦G ⊂ A, we have that X \ A ⊂ X \ A◦G, thus X \AG ⊂
X \A◦GG

= X \A◦G, and A◦G ⊂ X \X \AG
. On the other hand, since X \A ⊂ X \AG

, X \X \AG ⊂ A, 
thus X \X \AG ⊂ A◦G. This shows that A◦G = X \X \AG

, i.e., (2) is true. �
By Proposition 2.6, Corollary 2.7, Lemma 2.8, Theorems 2.9, 2.10 and 3.5 we have the following corollaries.

Corollary 3.6. Let G be a method on a set X and A ⊂ X. The following are equivalent.

(1) A is G-open.
(2) A ⊂ (A)G.
(3) A ⊂ A◦G, i.e., A◦G = A.

Corollary 3.7. Let G be a method on a set X. Then A◦G ⊂ (A)G for each A ⊂ X.

Corollary 3.8. Let G be a method on a topological space X. The following are equivalent.

(1) A◦ ⊂ (A)G for each A ⊂ X.
(2) A◦ ⊂ A◦G for each A ⊂ X.
(3) Every open set in X is G-open.
(4) For any x ∈ X, every neighborhood of x is a G-neighborhood of x in X.
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Proof. By Lemma 2.8 and Theorem 3.5, (1) ⇔ (2). By Corollary 3.6, (2) ⇒ (3). By Definitions 3.1(1) 
and 3.3(2), (3) ⇒ (4) ⇒ (2). �
Corollary 3.9. Let G be a method on a topological space X. The following are equivalent.

(1) For each A ⊂ X, A◦ = A◦G.
(2) For each A ⊂ X, the set A is open if and only if it is G-open.

Corollary 3.10. Let G be a method on a topological space X. The following are equivalent.

(1) For each A ⊂ X, (A)G = A◦.
(2) For each A ⊂ X, (A)G = A◦ = A◦G.
(3) For each A ⊂ X, (A)G ⊂ A◦, and A is open if and only if it is G-open.
(4) For each A ⊂ X, (A)G ⊂ A◦, and if A is open, then it is G-open.
(5) For each A ⊂ X, (A)G ⊂ A◦, and every neighborhood of x is a G-neighborhood of x in X for any 

x ∈ X.

Proof. By Theorems 2.10 and 3.5, (1) ⇔ (2) ⇔ (3) ⇔ (4). It follows from (3) ⇔ (4) in Corollary 3.8 that 
(4) ⇔ (5). �
Proposition 3.11. Let G be a method on a set X and A ⊂ X. Then

(1) x ∈ [A]G if and only if every subset U of X with x ∈ (U)G intersects A.
(2) x ∈ A

G if and only if every subset U of X with x ∈ U◦G intersects A.

Proof. (1) Suppose x ∈ X \ [A]G. Let U = X \A. Then x ∈ (U)G by Theorem 3.5, and U ∩A = ∅. On the 
other hand, suppose x ∈ [A]G ∩ (U)G. Then x ∈ [A]G \ [X \ U ]G, thus A 	⊂ X \ U , i.e., U ∩A 	= ∅.

(2) If x ∈ X \ A
G, the set X \ A

G is a G-open set containing x that does not intersect A, as desired. 
Conversely, suppose x ∈ A

G ∩ U◦G. Then x ∈ A
G \X \ UG

, thus A 	⊂ X \ U , i.e., U ∩A 	= ∅. �
Let G be a method on a set X. For any subset A of X, because the set A◦G is always G-open in X, 

a point x ∈ A◦G if and only if the set A is a G-neighborhood of x in X. We do not know how to characterize 
the property x ∈ (A)G for a subset A of a set X. A partial answer to the question is the following.

Proposition 3.12. Let G be a regular subsequential method on a topological space X. For any subset A
of X, a point p ∈ (A)G if and only if whenever x ∈ cG(X) and G(x) = p then there exists a subsequence 
x′ ∈ c(X) ∩ s(A) of x with limx′ = p.

Proof. Suppose p ∈ (A)G. Since G is regular and subsequential, it follows from Theorem 3.5 and Lemma 2.11
that p ∈ X \ [X \A]G = X \ [X \A]seq. Let x ∈ cG(X) and G(x) = p. Since G is subsequential, there exists 
a subsequence y = {yn}n∈N ∈ c(X) of x with limy = p. Now suppose that yn ∈ X \ A for all large n ∈ N. 
Then p = limy ∈ [X \ A]seq, which is not the case. Hence there exists a subsequence x′ ∈ c(X) ∩ s(A) of 
y (and x) with limx′ = p.

Conversely, suppose p /∈ (A)G. By Definition 3.3(1), there exists a y ∈ cG(X) ∩ s(X \A) with G(y) = p. 
Since G is subsequential, there exists a subsequence x ∈ c(X) of y with limx = p. Then, by regularity, 
x ∈ cG(X) with G(x) = p. But since y ∈ s(X \ A), x ∈ s(X \ A), and no subsequence of x can belong to 
s(A), which is a contradiction. �
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Remark 3.13. A subset A of a topological space X is called a sequential neighborhood of a point x ∈ X [12]
if, whenever a sequence {xn}n∈N in X converges to x, then there exists an m ∈ N with {xn : n > m} ⊂ A, 
i.e., {xn}n∈N is eventually in A.

(1) By Proposition 3.12, if G is the ordinary convergence method on a topological space X, then, for 
each A ⊂ X, x ∈ (A)G if and only if the set A is a sequential neighborhood of x in X. There may not exist 
a sequentially open set (i.e., a G-open set) U in X with x ∈ U ⊂ A in this case. Indeed, consider Arens’ 
space S2 in Example 2.13(3). Let A = {0} ∪{1/i : i ∈ N}. Then A is a sequential neighborhood of the point 
0 in X, i.e., 0 ∈ (A)G, but there does not exist a G-open set U of X with 0 ∈ U ⊂ A.

(2) Generally speaking, suppose that G is a method on a set X and G(x) ∈ (A)G, then the sequence 
x need not even have a subsequence in A. Consider Example 2.13(2). It is easy to see that (A)G = A

for each A ⊂ X. Take two distinct points a, b ∈ X. Put A = {a} and x = {a, b, b, b, · · · } ∈ cG(X), then 
G(x) = a ∈ (A)G, but x does not have a subsequence in A.

4. Subspace methods

Let G : cG(X) → X be a method on a set X, and Y ⊂ X. How can one induce naturally a method on 
the subset Y ?

Put

cG|Y (Y ) = {x ∈ s(Y ) ∩ cG(X) : G(x) ∈ Y },

and define a function G|Y : cG|Y (Y ) → Y by

G|Y (x) = G(x), x ∈ cG|Y (Y ).

Then G|Y is a method on the subset Y of X.

Definition 4.1. Let G be a method on a set X, and Y ⊂ X. The function G|Y : cG|Y (Y ) → Y is called the 
submethod of G on the subset Y of X, or the method on the subset Y induced by G.

If Y is a subset of a set X, we shall assume that Y is given the submethod on the subset Y of X unless 
we specially state otherwise. Obviously,

G|Y (cG|Y (Y )) = [Y ]G ∩ Y.

Thus, cG|Y (Y ) 	= ∅ if and only if [Y ]G ∩ Y 	= ∅.
Let G : cG(X) → X be the method on the discrete space X in Example 2.13(1). Put Y = X \ {0}. Then 

[Y ]G = {0}, and cG|Y (Y ) = ∅.

It is well-known that if X is a topological space and A ⊂ Y ⊂ X then

clY (A) = A ∩ Y and A◦ = Y ◦ ∩ intY (A).

We have the following results on G-methods and its submethods.

Proposition 4.2. Let G be a method on a set X, and A ⊂ Y ⊂ X. Then

(1) [A]G|Y = [A]G ∩ Y .
(2) A

G|Y ⊂ A
G ∩ Y .
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(3) Y ∩ (A)G ⊂ (Y )G ∩ (A)G|Y .
(4) A◦G ⊂ Y ◦G ∩A◦G|Y .

Proof. (1) If l ∈ [A]G|Y , there exists an x ∈ cG|Y (Y ) ∩ s(A) with G(x) = l, thus l ∈ [A]G ∩ Y . On the 
other hand, if l ∈ [A]G ∩ Y , there exists an x ∈ s(A) ∩ cG(X) with G(x) = l ∈ Y , hence x ∈ cG|Y (Y ), and 
l = G|Y (x) ∈ [A]G|Y . Therefore, [A]G|Y = [A]G ∩ Y .

(2) Since A
G is G-closed in X, [AG]G ⊂ A

G, then [AG ∩Y ]G|Y = [AG ∩Y ]G ∩Y ⊂ [AG]G ∩Y ⊂ A
G ∩Y , 

thus AG ∩ Y is G|Y -closed in Y and A ⊂ A
G ∩ Y , hence A

G|Y ⊂ A
G ∩ Y .

(3) (A)G|Y = Y \ [Y \ A]G|Y = Y \ ([Y \ A]G ∩ Y ) = Y ∩ (X \ [Y \ A]G) = Y ∩ (X \ (Y \ A))G =
Y ∩ ((X \ Y ) ∪A)G ⊃ Y ∩ (A)G. Since (A)G ⊂ (Y )G, Y ∩ (A)G ⊂ (Y )G ∩ (A)G|Y .

(4) A◦G|Y = Y \ Y \AG|Y ⊃ Y \ (Y \AG ∩ Y ) = Y ∩ (X \ Y \AG
) = Y ∩ (X \ (Y \A))◦G = Y ∩ ((X \

Y ) ∪A)◦G ⊃ Y ∩A◦G. Since A◦G ⊂ Y ◦G ∩ Y , A◦G = Y ◦G ∩ Y ∩A◦G ⊂ Y ◦G ∩A◦G|Y . �
Example 4.8(2) shows that it is possible that (A)G 	⊂ (Y )G ∩ (A)G|Y . In special cases we have that 

(A)G ⊂ (Y )G ∩ (A)G|Y , see Proposition 4.5.

Corollary 4.3. Let G be a method on a set X, and Y ⊂ X. If F is G-closed (resp. G-open) in X, then the 
set F ∩ Y is G|Y -closed (resp. G|Y -open) in Y .

Proof. If F is G-closed in X, then [F ]G ⊂ F . It follows from Proposition 4.2(1) that [F ∩ Y ]G|Y = [F ∩
Y ]G ∩ Y ⊂ [F ]G ∩ Y ⊂ F ∩ Y , i.e., F ∩ Y is G|Y -closed in Y .

If F is G-open in X, then X \ F is G-closed in X, thus (X \ F ) ∩ Y is G|Y -closed in Y , hence Y \ ((X \
F ) ∩ Y ) = Y ∩ F is G|Y -open in Y . �
Corollary 4.4. Let G be a method on a set X, and A ⊂ Y ⊂ X. If A is G|Y -closed in Y and Y is G-closed 
in X, then A is G-closed in X.

Proof. Since Y is G-closed in X, [A]G ⊂ [Y ]G ⊂ Y . And since A is G|Y -closed in Y , [A]G|Y ⊂ A. It follows 
from Proposition 4.2(1) that [A]G = [A]G ∩ Y = [A]G|Y ⊂ A, thus A is G-closed in X. �

Example 4.7(3) shows that Corollary 4.4 is not always true if “closed” is replaced by “open” throughout.

Proposition 4.5. Let G be a method on a set X, and A ⊂ Y ⊂ X. If X \ Y ⊂ [X \ Y ]G, then (A)G ⊂
X \ ([X \ Y ]G ∪ [Y \A]G) = (Y )G ∩ (A)G|Y .

Proof. By Theorem 3.5 and Proposition 4.2(1), we have

(A)G|Y = Y \ [Y \A]G|Y

= X \ ((X \ Y ) ∪ ([Y \A]G ∩ Y ))

= X \ ((X \ Y ) ∪ [Y \A]G).

Thus

(Y )G ∩ (A)G|Y = (X \ [X \ Y ]G) ∩ (X \ ((X \ Y ) ∪ [Y \A]G))

= X \ ([X \ Y ]G ∪ (X \ Y ) ∪ [Y \A]G)

= X \ ([X \ Y ]G ∪ [Y \A]G)

⊃ X \ [X \A]G = (A)G. �



40 S. Lin, L. Liu / Topology and its Applications 212 (2016) 29–48
Corollary 4.6. Let G be a regular subsequential method on a topological space X, and A ⊂ Y ⊂ X. Then 
(A)G = (Y )G ∩ (A)G|Y .

Proof. By Lemma 2.11, [A]G = [A]seq for each A ⊂ X. Thus, X \ Y ⊂ [X \ Y ]G and [X \ Y ]G ∪ [Y \A]G =
[X \A]G. By Proposition 4.5 we have (A)G = (Y )G ∩ (A)G|Y . �
Example 4.7. G|Y -closed sets and G|Y -open sets.

Let X be Arens’ space S2 in Example 2.13(3), and G be the ordinary convergence method on X. Take 
A = {1/i + 1/k : i, k ∈ N, k ≥ i2}, B = {0} and Y = A ∪B. Then [A]G|Y = A and (B)G|Y = B. Thus, A is 
G|Y -closed and B is G|Y -open in Y .

(1) A is G|Y -closed but A 	= Y ∩ F for any G-closed set F in X.
Suppose that F is G-closed in X and A = Y ∩F . Since A ⊂ F and F is G-closed in X, 1/i ∈ F for each 

i ∈ N, and 0 ∈ F , thus F = X, and Y ∩ F = Y 	= A.
(2) B is G|Y -open but B 	= Y ∩ U for any G-open set U in X.
Suppose that U is G-open in X and B = Y ∩ U . Since U is G-open in X, 0 ∈ U ⊂ (U)G. It follows 

from Proposition 3.12 that 1/i ∈ U for some i ∈ N, and 1/i + 1/k ∈ U for some k ∈ N and k ≥ i2, thus 
1/i + 1/k ∈ (Y ∩ U) \B, hence B 	= Y ∩ U .

(3) There exist a method G on a topological space X and A ⊂ Y ⊂ X such that Y is G-open in X and 
A is G|Y -open in Y , but A is not G-open in X.

Let G be the method on the topological space R in Example 2.14(1). Take Y = (0, +∞), A = (0, 1). It 
is easy to check that [R \ Y ]G = (−∞, 0], [Y \ A]G|Y = [1, +∞) and [R \ A]G = R, thus (Y )G = (0, +∞), 
(A)G|Y = (0, 1) and (A)G = ∅. Therefore, Y is G-open in X and A is G|Y -open in Y , but A is not G-open 
in X. �
Example 4.8. G|Y -closures, G|Y -kernels and G|Y -interiors.

(1) AG ∩ Y 	⊂ A
G|Y for A ⊂ Y ⊂ X.

Let G be the method on the topological space X in Example 4.7. Take A = {1/i +1/k : i, k ∈ N, k ≥ i2}, 
and Y = A ∪ {0}. It is easy to see that AG = X, and A

G|Y = A. Then A
G ∩ Y 	⊂ A

G|Y . This shows that 
the converse inclusion in Proposition 4.2(2) is false.

(2) (A)G 	⊂ (Y )G ∩ (A)G|Y for A ⊂ Y ⊂ X.
Let G be the method on the topological space X in Example 2.13(1), which is not a regular method. 

Then (A)G = X \ {0} for any A ⊂ X. Take Y = {2k : k ∈ Z}, A = {4k : k ∈ Z}. Then A ⊂ Y ⊂ X, and 
(A)G|Y = Y \ {0}. Hence, (A)G 	⊂ (Y )G ∩ (A)G|Y . This shows that one cannot drop “Y ∩” on the left of 
Proposition 4.2(3).

(3) (Y )G ∩ (A)G|Y 	⊂ (A)G, and Y ◦G ∩A◦G|Y 	⊂ A◦G for A ⊂ Y ⊂ X.
Let G be the method on the topological space R in Example 2.14(1), which is not a subsequential method. 

Take Y = [0, +∞), A = [0, 1]. It is easy to check that [R \A]G = R \AG
= R, [R \Y ]G = R \ Y G

= (−∞, 0]
and [Y \ A]G|Y = Y \AG|Y

= [1, +∞), thus (A)G = A◦G = ∅, (Y )G = Y ◦G = (0, +∞) and (A)G|Y =
A◦G|Y = [0, 1). Therefore, (Y )G ∩ (A)G|Y 	⊂ (A)G, and Y ◦G ∩ A◦G|Y 	⊂ A◦G. This shows that the converse 
inclusions in Propositions 4.2(3) and 4.2(4) are not true. �
5. G-sequential spaces and G-Fréchet spaces

Sequential spaces and Fréchet spaces are two kinds of spaces which are determined by convergent se-
quences of topological spaces. A topological space X is said to be sequential [13] if any subset A of X with 
[A]seq ⊂ A is closed in X, i.e., every sequentially closed set in X is closed. A topological space X is said to 
be Fréchet [13] if A ⊂ [A]seq for each A ⊂ X. Statistically sequential spaces and statistically Fréchet spaces 
were defined by Di Maio and Kočinac [9].
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Definition 5.1. Let G be a method on a topological space X.

(1) X is said to be a G-sequential space if any subset A of X with [A]G ⊂ A is closed in X, i.e., every 
G-closed set in X is closed.

(2) X is said to be a G-Fréchet space if A ⊂ [A]G for each A ⊂ X.

Remark 5.2. If we want to keep the consistency with the terminology for G-methods, G-sequential spaces
in Definition 5.1(1) should be called G-spaces. But, this sounds strange, so we prefer the terminology of 
G-sequential space.

The topological space X in Example 2.13(2) is not a G-sequential space. The topological space X in 
Example 2.13(1) is a G-sequential space, but it is not a G-Fréchet space. In Theorem 2.10 and Corol-
lary 3.10 we have used the property of being a G-Fréchet space. In this section, we discuss a characterization 
and hereditary properties of G-sequential spaces and G-Fréchet spaces. The concepts of G-open sets and 
G-neighborhoods will help us understand G-sequential spaces and G-Fréchet spaces.

Proposition 5.3. Let G be a method on a topological space X. The following are equivalent.

(1) X is a G-sequential space.
(2) A ⊂ A

G for each A ⊂ X.
(3) A◦G ⊂ A◦ for each A ⊂ X.
(4) Every G-open set of X is open.
(5) Every G-neighborhood of a point in X is a neighborhood of the point.

Proof. (1) ⇒ (2). Suppose each G-closed set in the topological space X is closed. For each A ⊂ X, the 

G-closed set AG of X is closed and A ⊂ A
G, thus A ⊂ A

G.
Obviously, (2) ⇔ (3) by Theorem 3.5.
(3) ⇒ (4). Let A be G-open in X. Then A◦G = A, and A◦G ⊂ A◦ by condition (3). Thus, A ⊂ A◦, i.e., 

A is open in X.
(4) ⇒ (5). If a subset A of X is a G-neighborhood of a point x ∈ X, there exists a G-open set U with 

x ∈ U ⊂ A. Then U is open in X by condition (4), so A is a neighborhood of x in X.
(5) ⇒ (1). Let A be G-closed in X. Then X \ A is G-open in X. For each x ∈ X \ A, it follows from 

Definition 3.1(1) that X \ A is a G-neighborhood of x in X, thus X \ A is a neighborhood of x in X by 
condition (5). Hence, X \A is open in X, i.e., A is closed in X. �

By Corollary 2.7 we have the following corollary.

Corollary 5.4. Every G-Fréchet space is a G-sequential space.

The following corollary is easily obtained by Lemma 2.11(1) and Definition 5.1.

Corollary 5.5. Let G be a regular method on a topological space X.

(1) If X is a sequential space, then X is a G-sequential space.
(2) If X is a Fréchet space, then X is a G-Fréchet space.

Let X be the set of all real numbers endowed with the usual topology in Example 2.13(2). Then X is a 
first-countable space, but X is not a G-sequential space. This shows that the regularity of the method G in 
Corollary 5.5 cannot be omitted.
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By Lemma 2.11(2), Theorems 2.10 and 3.5, the following corollary can easily be proved.

Proposition 5.6. Let G be a subsequential method on a topological space X. The following are equivalent.

(1) X is a G-Fréchet space.
(2) A = [A]G for each A ⊂ X.
(3) A◦ = (A)G for each A ⊂ X.

Remark 5.7. (1) It follows from Corollary 5.5 that the topological space R in Example 2.14(1) is G-Fréchet, 
but R does not satisfy Proposition 5.6(2), because A ∪B 	= [A ∪B]G. This shows that the subsequentiality 
of the method G in Proposition 5.6 cannot be omitted.

(2) Proposition 5.6 improves the following result. Let X be a statistically Fréchet space. If A ⊂ X, then 
a point x ∈ A◦ if and only if A is a sequential neighborhood of x in X [18].

In the second part of this section, we discuss hereditary properties of G-sequential spaces and a charac-
terization of G-Fréchet spaces. Let G be a method on a topological space X, and Y ⊂ X. The subspace 
Y is called a G-sequential space (resp. a G-Fréchet space) for short if Y is a G|Y -sequential space (resp. 
a G|Y -Fréchet space). Since a subspace of a sequential space is not necessarily sequential [13], a subspace 
of a G-sequential space is not always G-sequential.

Lemma 5.8. Every G-closed subset of a G-sequential space is G-sequential.

Proof. Suppose that G is a method on a G-sequential space X, and Y is a G-closed set of X. We will 
show that the subspace Y is a G|Y -sequential space. Let A be a subset of Y with [A]G|Y ⊂ A. Since 
[A]G ⊂ [Y ]G ⊂ Y , [A]G = [A]G ∩ Y = [A]G|Y ⊂ A, then A is closed in X, thus A is closed in Y . Hence, Y is 
a G-sequential space. �
Theorem 5.9. Let G be a method on a topological space X. The following are equivalent.

(1) X is a G-Fréchet space.
(2) Every subspace of X is a G-Fréchet space.
(3) Every subspace of X is a G-sequential space, and A ⊂ [A]G for each A ⊂ X.

Proof. (1) ⇒ (2). Suppose that Y is a subspace of X, and A ⊂ Y . Since X is a G-Fréchet space, by 
Definition 5.1(2) and Proposition 4.2(1), we have that clY (A) = A ∩ Y ⊂ [A]G ∩ Y = [A]G|Y . Thus, the 
subspace Y is a G|Y -Fréchet space, i.e., Y is a G-Fréchet space.

(2) ⇒ (3). By Corollary 5.4, it suffices to show that A ⊂ [A]G for each A ⊂ X. Since the subspace A is a 
G|A-Fréchet space, by Proposition 4.2(1), A = clA(A) ⊂ [A]G|A = [A]G ∩A ⊂ [A]G.

(3) ⇒ (1). Suppose that A ⊂ X and l ∈ A. If l ∈ A, then l ∈ [A]G because A ⊂ [A]G. If l /∈ A, put 
Y = {l} ∪A, then A is not closed in the subspace Y . Since Y is a G|Y -sequential space, it follows that there 
exists a sequence x ∈ s(A) ∩ cG|Y (Y ) such that G|Y (x) ∈ Y \A = {l}, hence l ∈ [A]G|Y = [A]G ∩Y ⊂ [A]G. 
This shows that A ⊂ [A]G. Thus X is a G-Fréchet space. �
Remark 5.10. Hereditary properties.

(1) If G is a regular method on a topological space X, then A ⊂ [A]G for each A ⊂ X, thus the topological 
space X is a G-Fréchet space if and only if each subspace of X is a G-sequential space, i.e., X is a hereditary 
G-sequential space. Therefore, Theorem 5.9 unifies the hereditary properties of Fréchet spaces [1, p. 14] and 
statistically Fréchet spaces [18].
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(2) A hereditary G-sequential space is not always a G-Fréchet space. Let G be the method on the discrete 
space X defined in Example 2.13(1). Then X is a hereditary G-sequential space, but it is not a G-Fréchet 
space because X 	⊂ [X]G.

The following question was posed by Professor Salvador García-Ferreira in the first Pan Pacific Interna-
tional Conference on Topology and Applications (Zhangzhou, November, 2015).

Question 5.11. Does there exist a topological space X that is not G-sequential for any G-method on X?

6. G-generalized topology

In this section we will discuss some relations between the family of all G-open sets on a topological space 
(X, T ) and the topology T on the set X.

A generalized topology [8] on a set X is a collection μ of subsets of X such that ∅ ∈ μ and μ is closed 
under arbitrary unions. Let G be a method on a set X, and put

TG = {A ⊂ X : A is G-open in X}.

Obviously, TG is a generalized topology on the set X by Proposition 3.2(1). Generally speaking, the family 
TG is not a topology on the set X, see Example 2.14(1).

Definition 6.1. Let G be a method on a set X. The family TG is called the G-generalized topology on the 
set X.

(1) TG is called the G-topology on the set X if it is a topology on X.
(2) If X carries a topology T then (X, T ) is called G-topologizable if T = TG.

Clearly, ∅, X ∈ TG, thus TG is a topology on the set X if and only if the intersection of any two G-open 
sets in X is G-open, if and only if the union of any two G-closed sets in X is G-closed. A sufficient condition 
for this to happen is the following by Proposition 2.6: for any A, B ⊂ X, [A ∪B]G ⊂ [A]G ∪ [B]G. It is easy 
to see that a topological space X is a G-topologizable space if and only if A◦ = A◦G for each A ⊂ X by 
Corollary 3.9, if and only if A = A

G for each A ⊂ X by Theorem 2.9.

Proposition 6.2. If G is a regular subsequential method on a topological space X, then TG is a G-topology 
on the set X.

Proof. It follows from Lemma 2.11 that [A]G = [A]seq for each A ⊂ X. It is easy to see that [A]G ∪ [B]G =
[A]seq ∪ [B]seq = [A ∪B]seq = [A ∪B]G for every A, B ⊂ X. Thus, TG is a G-topology on the set X. �
Lemma 6.3. Let (X, T ) be a topological space and G be a method on X. Then

(1) X is a G-sequential space if and only if TG ⊂ T .
(2) If G is a subsequential method on X, then T ⊂ TG.

Proof. (1) By Proposition 5.3, the space X is a G-sequential space if and only if every G-open set of X is 
open in X, if and only if TG ⊂ T .

(2) Suppose G is a subsequential method on the topological space X. By Lemma 2.11(2), every closed 
set of X is G-closed, thus T ⊂ TG. �
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Theorem 6.4. If G is a method on a topological space X, then X is a G-topologizable sequential space if and 
only if it is a G-sequential space such that each sequentially closed set of X is G-closed.

Proof. The topology of the topological space X is denoted by T . Suppose X is a G-topologizable sequential 
space. It follows from TG = T that a subset of X is G-open if and only if it is open. Thus, X is a G-sequential 
space by Proposition 5.3. Let A be a sequentially closed set of X. Since A is a sequential space, A is closed, 
and A is G-closed in X.

Conversely, suppose X is a G-sequential space such that each sequentially closed set of X is G-closed. 
Since each closed set is sequentially closed, T ⊂ TG, and TG ⊂ T by Lemma 6.3(1), thus TG = T , i.e., X is 
a G-topologizable space. Let A be a sequentially closed set in X. Then A is G-closed, thus A is closed in X. 
Hence, X is a sequential space. �

The following corollary is obtained by Theorem 6.4 and Lemma 2.11(2).

Corollary 6.5. If G is a subsequential method on a topological space X, then X is a G-sequential space if 
and only if it is a G-topologizable sequential space.

Corollary 6.6. Suppose G is a subsequential method on a topological space X. If X is a G-Fréchet space, 
then X is a G-topologizable Fréchet space.

Proof. The topology of the topological space X is denoted by T . By Corollary 5.4 and Corollary 6.5, X is 
a G-topologizable space. Let A ⊂ X and x ∈ A. By Proposition 5.6 and Lemma 2.11(2), A ⊂ [A]seq, thus 
x ∈ [A]seq, and there is an x ∈ s(A) ∩ c(X) such that limx = x. Hence, X is a Fréchet space. �

By Corollaries 5.5(2) and 6.6 the following result is obtained.

Corollary 6.7. If G is a regular subsequential method on a topological space X, then X is a G-Fréchet space 
if and only if it is a G-topologizable Fréchet space.

Recall the notion of statistical convergence in topological spaces. For each subset A of N the asymptotic 
density of A [17], denoted δ(A), is given by

δ(A) = lim
n→∞

1
n
|{k ∈ A : k ≤ n}|,

if this limit exists, where |B| denotes the cardinality of the set B. Let X be a topological space. A sequence 
{xn}n∈N in X is said to converge statistically to a point x ∈ X [9], if δ({n ∈ N : xn /∈ U}) = 0, i.e., 
δ({n ∈ N : xn ∈ U}) = 1 for every neighborhood U of x in X. Obviously, every convergent sequence in a 
topological space is statistically convergent to the same limit, but the converse is not true in general [9]. 
Statistical convergence on a topological space is a regular method on the space.

Example 6.8. G-topology.
(1) There is a method G on a topological space X such that TG is a G-topology, but the method G is 

neither a regular nor a subsequential method on X.
Let G be the method on the topological space X in Example 2.13(1), which is neither a regular nor a 

subsequential method. It is easy to see that TG = {X} ∪ {U ⊂ X : 0 /∈ U}. Hence, TG is a topology on X. 
This shows that the converse of Proposition 6.2 is false.

(2) There is a regular method G on a topological space X such that X is a G-sequential and G-topologizable 
space, but X is not a sequential space.
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Let S = {1/n : n ∈ N} and X = {0} ∪ S. The topology T on X is defined in the following way: i) each 
point 1/n is isolated; ii) each open neighborhood of the point 0 is a set U of the form U = {0} ∪M , where 
M ⊂ S and δ({n ∈ N : 1/n ∈ M}) = 1. Then X is not a sequential space [18]. Let G be the statistical 
convergence method on X. Then G is a regular method. It was proved that X is a G-sequential space 
[18]. By Corollary 6.5, G is not a subsequential method on X. Since each open set of X is G-open (i.e., 
statistically open [18]), T ⊂ TG. This shows that the converse of Lemma 6.3(2) is false.

By Lemma 6.3(1), TG ⊂ T . Thus, TG = T , and X is a G-topologizable space. This shows that the 
subsequentiality of the method G in Corollary 6.5 cannot be omitted.

(3) There is a regular method G on a topological space X such that X is a G-Fréchet space, but TG is not 
a topology on X.

Let G be the method on the topological space X in Example 2.14(1), which is a regular method and TG
is not a topology on X. Since X is first-countable, by Corollary 5.5(2), X is a G-Fréchet space. This shows 
that the subsequentiality of the method G in Corollary 6.6 cannot be omitted. �
Question 6.9. Suppose G is a subsequential method on a topological space X. Is X a G-Fréchet space if it is 
a G-topologizable Fréchet space?

7. G-continuous mappings

Let X and Y be topological spaces. A mapping f : X → Y is called sequentially continuous [1] if, whenever 
a sequence x of X converges to a point l ∈ X, then the sequence f(x) of Y converges to f(l) ∈ Y . Çakallı 
[4] defined G-sequential continuity as follows. Let G be a method on a first-countable topological group X. 
A mapping f : X → X is called G-sequentially continuous if f(x) ∈ cG(X) and G(f(x)) = f(G(x)) for each 
x ∈ cG(X). The mapping f is a self-mapping on the topological group. Since G-methods and G-convergence 
are defined on sets, we introduce the following notion of G-continuity in sets.

Definition 7.1. Let G1, G2 be methods on sets X and Y , respectively. A mapping f : X → Y is called 
(G1, G2)-continuous if f(x) ∈ cG2(Y ) and G2(f(x)) = f(G1(x)) for each x ∈ cG1(X). (G1, G2)-continuity 
is called the G-continuity if G1 and G2 are the same method G.

We can define (G1, G2)-continuity at a point of a set, and then define (G1, G2)-continuity on some 
subsets or a set. Connor, Grosse-Erdmann [7] and Mucuk, Şahan [16] considered G-continuity at a point in 
the topological space of all real numbers or first-countable topological groups, respectively.

Lemma 7.2. Let G1, G2 be methods on sets X and Y , respectively. The following are equivalent for a mapping 
f : X → Y .

(1) f(AG1) ⊂ f(A)
G2 for each A ⊂ X.

(2) f−1(F ) is a G1-closed set of X for each G2-closed set F of Y .
(3) f−1(W ) is a G1-open set of X for each G2-open set W of Y .
(4) For each x ∈ X if U is a G2-neighborhood of f(x), then there exists a G1-neighborhood V of x with 

f(V ) ⊂ U .

Proof. Obviously, (2) ⇔ (3). To complete the proof, we will prove that (3) ⇒ (4) ⇒ (1) ⇒ (2).
(3) ⇒ (4). For each x ∈ X, if U is a G2-neighborhood of f(x), then there exists a G2-open set W with 

f(x) ∈ W ⊂ U , i.e., x ∈ f−1(W ) ⊂ f−1(U). By condition (3), f−1(W ) is a G1-open set of X, hence f−1(W )
is a G1-neighborhood of x, and f(f−1(W )) ⊂ U .
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(4) ⇒ (1). For any A ⊂ X, if x ∈ A
G1 and U is a G2-open set of Y containing f(x), then there exists a 

G1-open set V of X containing x with f(V ) ⊂ U by condition (4). By Proposition 3.11(2), V ∩A 	= ∅, then 

f(V ) ∩ f(A) 	= ∅, and U ∩ f(A) 	= ∅, hence f(x) ∈ f(A)
G2 . This shows that f(AG1) ⊂ f(A)

G2 .
(1) ⇒ (2). Let F be a G2-closed set of Y and let A = f−1(F ). Then F

G2 = F , f(A) ⊂ F , and 

f(AG1) ⊂ f(A)
G2 ⊂ F

G2 = F , thus AG1 ⊂ f−1(F ) = A, hence f−1(F ) is G1-closed in X. �
Theorem 7.3. Let f : X → Y be a mapping, where G1, G2 are methods on sets X and Y , respectively. Then 
(1) ⇒ (2) ⇒ (3) in the following conditions.

(1) f is a (G1, G2)-continuous mapping.
(2) f([A]G1) ⊂ [f(A)]G2 for each A ⊂ X.
(3) f−1(F ) is a G1-closed set of X for each G2-closed set F of Y .

Proof. (1) ⇒ (2). Let A ⊂ X and l ∈ [A]G1 . There exists an x ∈ s(A) ∩ cG1(X) with G1(x) = l. By 
condition (1), we have f(x) ∈ s(f(A)) ∩ cG2(Y ) and G2(f(x)) = f(G1(x)), then f(l) ∈ [f(A)]G2 . Thus, 
f([A]G1) ⊂ [f(A)]G2 .

(2) ⇒ (3). Suppose that F is a G2-closed set of Y . Put A = f−1(F ), then f(A) ⊂ F . By condition (2), 
we have f([A]G1) ⊂ [f(A)]G2 ⊂ [F ]G2 ⊂ F , hence [A]G1 ⊂ f−1(F ) = A, i.e., f−1(F ) is a G1-closed set 
of X. �

It is worth noting that Lemma 7.2 and Theorem 7.3 have nothing to do with the topology of the sets. 
Thus one can always introduce an appropriate topology on the sets to make the map f continuous.

Example 7.4. Continuity and G-continuity.
(1) There exists a mapping which satisfies Theorem 7.3(3), but does not satisfy Theorem 7.3(2).
Let X be the set Z of all integers endowed with the discrete topology. Put

cG1(X) = {{xn}n∈N ∈ s(X) : there exists an m ∈ N such that

{xn − xn−1}n>m is a constant sequence}.

Define G1 : cG1(X) → X by G1(x) = lim
n→∞

(xn+1 − xn) for each x = {xn}n∈N ∈ cG1(X). Then G1 is a 

method on X.
Let Y = {0, 1}. Define a mapping f : X → Y as follows: f(x) = 0 if and only if x = 2k, k ∈ Z.
Let G2 = G1|Y . Then G2 is a method on the set Y . If F is a G2-closed set of Y , then F is equal to 

{0} or Y , thus f−1(F ) is a G1-closed set of X. Therefore, f satisfies Theorem 7.3(3). On the other hand, 
N ⊂ X, 1 ∈ [N]G1 and [f(N)]G2 = {0}, hence f([N]G1) 	⊂ [f(N)]G2 , and f does satisfy Theorem 7.3(2).

(2) There exists a bijective mapping which satisfies Theorem 7.3(2), but does not satisfy Theorem 7.3(1).
Let G1 be the method G on the topological space X defined in Example 2.13(1). Let G2 be the method 

G1 on the topological space X defined in Example 7.4(1). Let f : X → X be the identity mapping. Then 
f is a bijective mapping. For each non-empty set A ⊂ Z, [A]G1 = {0} ⊂ [A]G2 , i.e., f([A]G1) ⊂ [f(A)]G2 . 
Let x = {1, 1, 2, 3, 5, 8, · · · } be the Fibonacci sequence. Then x ∈ cG1(X), but f(x) /∈ cG2(X), so f is not 
(G1, G2)-continuous. �

Connor and Grosse-Erdmann [7, p. 109] posed the following question. Are there a regular method G on 
the topological space R and a G-continuous mapping f : R → R such that f is not continuous?

Lemma 7.5. [2] Let X, Y be topological spaces and f : X → Y be a mapping. f is a sequentially continuous 
mapping if and only if f−1(F ) is a sequentially closed set of X whenever F is a sequentially closed set of Y .
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By Lemma 2.11, Theorem 7.3 and Lemma 7.5, we have the following corollaries.

Corollary 7.6. Let G1, G2 be regular subsequential methods on topological spaces X and Y , respectively. If 
f : X → Y is a (G1, G2)-continuous mapping, then f is sequentially continuous.

Corollary 7.7. Let G1, G2 be regular subsequential methods on topological spaces X and Y , respectively. If 
X is a sequential space, and f : X → Y is a (G1, G2)-continuous mapping, then f is continuous.

Theorem 7.8. Let X be a Tychonoff space satisfying the first axiom of countability, and G be a method 
satisfying the cofinal condition on X. If each continuous function f : X → R is (G, GR)-continuous, where 
GR is a regular method on R, then G is a subsequential method on X.

Proof. If G is not a subsequential method on X, there exists a subset A of X with [A]G 	⊂ [A]seq = A by 
Proposition 2.12 and first-countability of X. Pick a point l ∈ [A]G \ A. Because X is a Tychonoff space, 
it follows that there exists a continuous function f : X → R such that f(l) = 0 and f(A) = {1}. There 
is an x ∈ s(A) ∩ cG(X) such that G(x) = l by l ∈ [A]G. We know that f is (G, GR)-continuous, hence 
G(f(x)) = GR(f(x)) = 1 	= 0 = f(l), which is a contradiction. Therefore, G is a subsequential method 
on X. �

Theorem 7.8 improves the following result on R with the ordinary topology (see [7, Theorem 2]): Let G
be a regular method. If every continuous function is G-continuous, then G is a subsequential method.

At the end of this section, we discuss some mappings which preserve G-sequential spaces or G-Fréchet 
spaces.

Let X and Y be topological spaces. A surjective mapping f : X → Y is called quotient if, whenever 
f−1(U) is an open set of X, then U is an open set of Y . Continuity is not required for a quotient mapping. 
f is called pseudo-open [13] if for each y ∈ Y and each open subset U in X with f−1({y}) ⊂ U , then we have 
that f(U) is a neighborhood of y in Y . It is easy to verify that every pseudo-open mapping is a quotient 
mapping.

Theorem 7.9. Let G1, G2 be methods on topological spaces X and Y , respectively. If X is a G1-sequential 
space and f : X → Y is a (G1, G2)-continuous quotient mapping, then Y is a G2-sequential space.

Proof. Let U be a G2-open set of Y . Since f : X → Y is a (G1, G2)-continuous mapping, and X is a 
G1-sequential space, it is clear that f−1(U) is open in X by Theorem 7.3, Lemma 7.2 and Proposition 5.3. 
It follows that U is an open set of Y because f is quotient. By Proposition 5.3, Y is a G2-sequential 
space. �
Theorem 7.10. Let G1, G2 be methods on topological spaces X and Y , respectively. If X is a G1-Fréchet 
space and f : X → Y is a (G1, G2)-continuous pseudo-open mapping, then Y is a G2-Fréchet space.

Proof. Let A ⊂ Y , and y ∈ A. Then f−1({y}) ∩ f−1(A) 	= ∅. In fact, if f−1({y}) ∩ f−1(A) = ∅, that is 
f−1({y}) ⊂ X \ f−1(A), since f : X → Y is a pseudo-open mapping, it follows that

y ∈ [f(X \ f−1(A))]◦ ⊂ [f(X \ f−1(A))]◦ = (Y \A)◦ = Y \A,

which is a contradiction. Hence, there exists a point l ∈ f−1({y}) ∩ f−1(A). Because X is a G1-Fréchet 
space, it follows that f−1(A) ⊂ [f−1(A)]G1 , so there exists an x ∈ s(f−1(A)) ∩cG1(X) with G1(x) = l. Since 
f : X → Y is a (G1, G2)-continuous mapping, f(x) ∈ s(A) ∩ cG2(Y ), G2(f(x)) = f(G1(x)) = f(l) = y, and 
y ∈ [A]G2 . Therefore, A ⊂ [A]G2 . Hence Y is a G2-Fréchet space. �
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