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In this paper, some generalized metric properties on free paratopological groups 
are obtained. At first, a general stability theorem of free paratopological groups 
on submetrizable spaces is established. Secondly, countable tightness of free 
paratopological groups on k∗-metrizable k-spaces or k-semistratifiable k-spaces is 
investigated. Finally, first-countability of free paratopological groups is discussed 
and strongly Fréchetness of free paratopological groups is characterized. These 
complement and improve some known conclusions in literature. In addition, some 
questions are posed.
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1. Introduction

A topological group is a group G with a topology such that the multiplication mapping of G ×G to G is 
jointly continuous and the inversion mapping of G on itself is also continuous. A paratopological group is 
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a group G with a topology such that the multiplication mapping of G ×G to G is jointly continuous. The 
absence of continuity of inversion, the typical situation in paratopological groups, makes the study in this 
area very different from that in topological groups [2].

In 1941, free topological groups in the sense of Markov were introduced [22]. As in free topological 
groups, in 2002, S. Romaguera, M. Sanchis, and M. Tkachenko [29] introduced free paratopological groups 
on arbitrary topological spaces and discussed some of their topological properties. Recently, F. Lin, N. 
Pyrch, et al. have explored some generalized metric properties of free paratopological groups [16,28]. For 
example, the free (Abelian) paratopological group on a submetrizable space is submetrizable [28]. If the 
free Abelian paratopological group AP(X) on a metrizable space X has countable tightness, then the 
subspace X ′ consisting of all non-isolated points in X is separable [16]. For a regular space X, AP2(X) is 
first-countable if and only if AP2(X) is metrizable if and only if APn(X) is first-countable for every n ∈ N

if and only if X is metrizable with only finitely many non-isolated points [16].
In this paper, we shall complement and improve the above results obtained by F. Lin, N. Pyrch, et al.
Firstly, in Section 3, we establish a general stability theorem of free paratopological groups on submetriz-

able spaces. Namely, if X is a submetrizable space, then X is a Ξ-space if and only if the free paratopological 
group FP(X) on X is a Ξ-space (Theorem 3.6). As an application, we prove that if X is a submetrizable 
space, then X is a σ-space (semi-stratifiable space) if and only if FP(X) is a σ-space (semi-stratifiable 
space).

Secondly, in Section 4, we investigate countable tightness of free (Abelian) paratopological groups on 
k∗-metrizable k-spaces or k-semistratifiable k-spaces. It is shown that if the free paratopological group 
FP(X) or the free Abelian paratopological group AP(X) on a Hausdorff k∗-metrizable k-space X has 
countable tightness, then X is an ℵ′

0-space (Theorem 4.9). If the free paratopological group FP(X) or 
the free Abelian paratopological group AP(X) on a Hausdorff k-semistratifiable k-space X has countable 
tightness, then the subspace X ′ consisting of all non-isolated points in X is ω1-compact (Theorem 4.18).

Finally, in Section 5, we discuss first-countability of free paratopological groups and characterize strongly 
Fréchetness of free (Abelian) paratopological groups. We show that for a regular space X, FP2(X) is 
first-countable if and only if FP2(X) is metrizable if and only if X is metrizable with only finitely many 
non-isolated points (Theorem 5.5). For a completely regular space X, the free paratopological group FP(X)
if and only if the free Abelian paratopological group AP(X) on X is strongly Fréchet if and only if the 
space X is discrete (Theorem 5.8).

2. Preparations about free paratopological groups

Definition 2.1. ([28]) Let X be a subspace of a paratopological group G. Suppose that

(1) the set X generates G algebraically, that is, 〈X〉 = G; and
(2) every continuous mapping f : X → H of X to an arbitrary paratopological group H extends to a 

continuous homomorphism f̂ : G → H.

Then G is called the Markov free paratopological group (briefly, free paratopological group) on X and is 
denoted by FP(X).

If all groups in the above definition are Abelian, we obtain the definition of Markov free Abelian paratopo-
logical group on X, which is denoted by AP(X).

In the paper, Fa(X) (Aa(X)) algebraically denotes the free group (free Abelian group) on a non-empty 
set X and e (0) is the identity of Fa(X) (Aa(X)). The set X is called the free basis of Fa(X) (Aa(X)). Here 
are some details, for instance, see [2].
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Every g ∈ Fa(X) distinct from e has the form g = xε1
1 · · ·xεn

n , where x1, . . . , xn ∈ X and ε1, . . . , εn = ±1. 
This expression or word for g is called reduced if it contains no pair of consecutive symbols of the form xx−1

or x−1x and we say in this case that the length l(g) of g equals to n. Every element g ∈ Fa(X) distinct from 
the identity e can be uniquely written in the form g = xr1

1 xr2
2 · · ·xrn

n , where n ≥ 1, ri ∈ Z \ {0}, xi ∈ X and 
xi �= xi+1 for every i = 1, . . . , n − 1. Similar assertions (with the obvious changes for commutativity) are 
valid for Aa(X).

Remark 2.2. It is well known that the topology of FP(X) (AP(X)) is the finest paratopological group 
topology on the group Fa(X) (Aa(X)) which induces the original topology on X [28].

For every non-negative integer n, denote by FPn(X) (APn(X)) the subspace of the free paratopological 
group FP(X) (AP(X) ) that consists of all words of reduced length ≤ n with respect to the free basis X. 
Obviously, FP0(X) = {e}. Denote by X̃ the free topological sum X ⊕ {e} ⊕X−1. In the non-Abelian case, 
put Cn(X) = FPn(X) \FPn−1(X) for every n ≥ 1. For every n ≥ 1, denote by in the natural mapping of X̃n

onto FPn(X), i.e., in(y1, . . . , yn) = y1 · · · yn for every point (y1, . . . , yn) ∈ X̃n. It follows that the mapping 
in is continuous. We denote by C∗

n(X) = i←n (Cn(X)) the inverse image of Cn(X) under the mapping 
in : X̃n → FPn(X). Analogously, in the Abelian case, put Cn(X) = APn(X) \ APn−1(X) and C∗

n(X)
denotes the inverse image of Cn(X) under the continuous multiplication mapping in : X̃n → APn(X).

Remark 2.3. If X is a T1-space, then FP(X) is also T1, X−1 is closed and discrete, and the subspaces X
and FPn(X) of FP(X) are all closed in FP(X) for every non-negative integer n [6]. The same is true for 
AP(X) [28].

In what follows, the subspace X of FP(X) and AP(X) is assumed to be T1 in the paper. All closed 
mappings are assumed to be continuous and surjective.

3. A general stability theorem of free paratopological groups on submetrizable spaces

A topological space (X, τ) is submetrizable if there exists a topology τ ′ on X such that τ ′ ⊂ τ and (X, τ ′)
is metrizable [10]. Submetrizability is stable with respect to taking free (Abelian) paratopological groups 
[28]. We shall establish a general stability theorem of free paratopological groups on submetrizable spaces.

In this paper, the topological property Ξ is meant to satisfy the following:

• Ξ is hereditary with respect to closed subspaces;
• Ξ is finitely productive;
• Every discrete space has the property Ξ; and
• A space which is a countable union of closed subspaces with the property Ξ still has the property Ξ.

A topological space X is said to a Ξ-space if it has the topological property Ξ.

Definition 3.1. Let P be a family of subsets of a topological space X.

(1) P is a network [1] for X if for every point x ∈ X and any neighborhood U of x, there exists a P ∈ P
such that x ∈ P ⊂ U .

(2) P is locally finite if for every x ∈ X, there exists a neighborhood W of x such that W has non-empty 
intersection with at most finitely many elements of P.

(3) P is σ-locally finite if P can be expressed as a countable union of locally finite families.

Definition 3.2. Let X be a topological space.
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(1) X is called a σ-space [25] if it has a σ-locally finite network.
(2) X is called a semi-stratifiable space [5] if there exists a function F which assigns to every n ∈ N and 

open set U ⊂ X, a closed set F (n, U) satisfying
(a) U =

⋃
n∈N

F (n, U); and
(b) V ⊂ U ⇒ F (n, V ) ⊂ F (n, U).

If also, whenever K is a compact subset of an open set U , there exists an m ∈ N such that K ⊂ F (m, U), 
then X is k-semistratifiable [21].

Remark 3.3. (1) It is easy to see that the property of being a σ-space satisfies the topological property Ξ.
(2) It was shown in [26] that the property of being a semi-stratifiable space satisfies the topological 

property Ξ.
(3) Every regular σ-space is a semi-stratifiable space [10, Theorem 5.9]. There exists a submetrizable 

semi-stratifiable regular space which is not a σ-space [10, Example 9.10].

Now, we show that the class of Ξ-spaces is stable with respect to taking free paratopological groups on 
submetrizable spaces.

Lemma 3.4. ([29, Theorem 3.2], [14, Theorems 3.2 and 3.3]) Let (X, �) be a metric space, where � is bounded 
by 1. Let �̂ be the two-sided invariant Graev extension of � to Fa(X). Then the family {B�̂(e, ε) : ε > 0} is 
a base at the identity e for a metrizable paratopological group topology T� on the free group Fa(X) and the 
restriction of T� to X coincides with the topology on X generated by �. For every non-negative integer n, 
FPn(X) is closed in (Fa(X), T�). The same is true for AP(X).

A mapping f : X → Y is perfect [8] if f is closed and f−1(y) is compact for every y ∈ Y .

Lemma 3.5. ([16, Propositions 6.3 and 6.4]) Let X be a topological space.
(1) In the case of FP(X), then the mapping in homeomorphically maps C∗

n(X) onto Cn(X).
(2) In the case of AP(X), then the mapping in : C∗

n(X) → Cn(X) is a perfect mapping.

Theorem 3.6. Let X be a submetrizable space. Then X is a Ξ-space if and only if FP(X) is a Ξ-space.

Proof. Sufficiency. This is obvious because the class of Ξ-spaces is hereditary with respect to closed sub-
spaces.

Necessity. Suppose that (X, τ) is a submetrizable Ξ-space. Then there exists a topology τ ′ ⊂ τ such 
that (X, τ ′) is metrizable. Let � be a metric on (X, τ ′) which is compatible with τ ′ and bounded by 1. Let 
id : (X, τ) → (X, τ ′) be the continuous identity mapping. Denote by Y the space (X, τ ′). We can extend the 
mapping id to a continuous homomorphism îd : FP(X) → FP(Y ). It follows that îd is the identity mapping 
on the abstract group Fa(X). By Lemma 3.4, � can be extended to a metric �̂ on the abstract group Fa(X)
such that (Fa(X), ̂�) is a metrizable paratopological group weaker than the topology of FP(Y ). Also, for 
every non-negative integer n, FPn(X) is closed in (Fa(X), ̂�). Since every closed subset of a metrizable 
space is a Gδ-set, for every non-negative integer n,

FPn(X) =
⋂
j∈N

Un,j

with every Un,j open in (Fa(X), ̂�). Since îd is the continuous identity isomorphism, every Un,j open in 
FP(X).

Fix n ∈ N. Let
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Vn−1,j = Un−1,j ∩ FPn(X)

for every j ∈ N. Thus

FPn−1(X) = FPn−1(X) ∩ FPn(X) =
⋂
j∈N

(Un−1,j ∩ FPn(X)) =
⋂
j∈N

Vn−1,j

and

Cn(X) = FPn(X) \ FPn−1(X) =
⋃
j∈N

(FPn(X) \ Vn−1,j).

Obviously, En,j = FPn(X) \ Vn−1,j is closed in FP(X) for every j ∈ N. Since i−1
n (En,j) is closed in X̃n, by 

Lemma 3.5 (1), En,j are Ξ-spaces for every n, j ∈ N. Hence,

FP(X) = {e} ∪
⋃
n∈N

Cn(X) = {e} ∪
⋃

n,j∈N

En,j

is a Ξ-space. �
Corollary 3.7. Let X be a submetrizable space. Then X is a σ-space if and only if FP(X) is a σ-space.

Corollary 3.8. Let X be a submetrizable space. Then X is a semi-stratifiable space if and only if FP(X) is 
a semi-stratifiable space.

The following Lemma 3.9 has been probably known.

Lemma 3.9. Let f : X → Y be a perfect mapping. If X is a σ-space, then so is Y .

Proof. Let A be a σ-locally finite network for the σ-space X. The mapping f being perfect, the family 
{f(A) : A ∈ A} is a σ-locally finite network for Y by [8, Lemma 3.10.11]. Hence, Y is a σ-space. �
Lemma 3.10. ([5]) Let f : X → Y be a closed mapping. If X is a semi-stratifiable space, then so is Y .

By Lemmas 3.5(2), 3.9, 3.10 and the proof of Theorem 3.6, we obtain following two corollaries.

Corollary 3.11. Let X be a submetrizable space. Then X is a σ-space if and only if AP(X) is a σ-space.

Corollary 3.12. Let X be a submetrizable space. Then X is a semi-stratifiable space if and only if AP(X) is 
a semi-stratifiable space.

Since every Hausdorff paracompact σ-space is submetrizable [10], we have the following.

Corollary 3.13. If X is a Hausdorff paracompact σ-space, then both FP(X) and AP(X) are σ-spaces.

Question 3.14. Is the free paratopological group FP(X) or the free Abelian paratopological group AP(X) on 
a σ-space X a σ-space?
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4. Countable tightness of free paratopological groups on k∗-metrizable k-spaces or k-semistratifiable 
k-spaces

A new class of generalized metric spaces named k∗-metrizable spaces was introduced by means of con-
tinuous subproper images of metric spaces in [3]. A mapping f : X → Y is subproper [3] if there exists a 
subset Z of X such that f(Z) = Y and for any set K with compact closure in Y , the set Z ∩ f−1(K) has 
compact closure in X. Interestingly, it was shown that a Hausdorff space is a k∗-metrizable space if and only 
if it has a σ-compact-finite cl1-osed k-network [3]. We shall discuss the countable tightness of free (Abelian) 
paratopological groups on k∗-metrizable k-spaces or k-semistratifiable k-spaces to complement and improve 
one of the main results in [16]. Recall a few related notions.

Let X be a topological space. A subset P of X is called a sequential neighborhood of x ∈ X in X if any 
sequence {xn}n∈N converging to x is eventually in P , i.e., {xn : n ≥ k0} ∪ {x} ⊂ P for some k0 ∈ N. P is 
called a sequentially open subset of X if P is a sequential neighborhood of every point of P in X. The space 
X is called a sequential space [8] if every sequentially open subset of X is open in X. X is called a k-space
[8] provided that a subset A ⊂ X is closed in X if and only if A ∩K is closed in K for every compact subset 
K of X. X is of countable tightness if whenever x ∈ A in X, then x ∈ C for some countable C ⊂ A. It 
is not difficult to check that the property of countable tightness is preserved by quotient mappings and is 
hereditary. X is ω1-compact if every uncountable subset of X has an accumulation point.

Let P be a family of subsets of a topological space X. P is a k-network [27] for X if whenever K is 
a compact subset of an open set U , there exists a finite subfamily F ⊂ P such that K ⊂ ∪F ⊂ U . P is 
a cl1-osed k-network [3] for X if whenever K is a compact subset of an open set U , there exists a finite 
subfamily F ⊂ P such that K ⊂ ∪F ⊂ cl1(∪F) ⊂ U , where cl1(∪F) denotes the set consisting of the limits 
of convergent sequences of points of ∪F in X. P is compact-finite if every compact subset of X intersects 
only finitely many elements of P. P is σ-compact-finite if P can be expressed as a countable union of 
compact-finite families.

We still need a series of lemmas.

Lemma 4.1. Every compact-finite family of an ω1-compact k-space is countable.

Proof. Let P be a compact-finite family of an ω1-compact k-space X. Suppose P is not countable. Then 
there exist a subfamily F = {Pα : α < ω1} ⊂ P and a subset A = {xα : α < ω1} ⊂ X satisfying

(1) for every α < ω1, xα ∈ Pα; and
(2) for any two distinct α, β < ω1, xα �= xβ and Pα �= Pβ .

The space X being ω1-compact, let x be an accumulation point of A in X, whence the set A \ {x} is not 
closed in X. Since X is a k-space, there is a compact subset K of X such that (A \ {x}) ∩K is not closed 
in K. Then (A \ {x}) ∩K is infinite, which contradicts the hypothesis that P is compact-finite for X. �
Lemma 4.2. ([11]) Every Hausdorff k-space with a point-countable k-network is a sequential space.

We recall that Sω1 is the quotient space obtained by identifying all limit points of the topological sum of 
ω1 convergent sequences homeomorphic to the subspace {0} ∪ { 1

n : n ∈ N} of the real line R.

Lemma 4.3. Let X be a Hausdorff k∗-metrizable k-space. If the subspace X ′ consisting of all non-isolated 
points in X is not ω1-compact, then there exists a closed mapping f : X → Y such that Y contains a closed 
copy of Sω1 .
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Proof. Let P =
⋃

n∈N
Pn be a σ-compact-finite cl1-osed k-network for X. By Lemma 4.2, X is a sequential 

space. Since the subspace X ′ consisting of all non-isolated points in X is not ω1-compact, there exists an 
uncountable set D = {xα : α ∈ Γ} such that D ⊂ X ′ and D has no accumulations in X, where Γ is an 
index set.

Claim 1. For every α ∈ Γ , there exists a non-trivial sequence {xn(α)}n∈N of points of X converging to 
xα in X such that D ∩ {xn(α) : n ∈ N} = ∅.

In fact, the space X being a sequential space, for every α ∈ Γ , {xα} is not sequentially open in X, whence 
there exists a non-trivial sequence {bn(α)}n∈N of points of X converging to xα in X. Since the set D has 
no accumulations in X,

|D ∩ {bn(α) : n ∈ N}| < ω

for every α ∈ Γ . Thus Claim 1 is proved.
Claim 2. There exists a subset Λ of Γ with |Λ| = ω1 such that for every α ∈ Λ, there are a non-trivial 

sequence {zn(α)}n∈N of points of X converging to xα in X and a Pα ∈ P satisfying

(a) {zn(α) : n ∈ N} ⊂ Pα;
(b) {zn(α) : n ∈ N} ∩ {zn(β) : n ∈ N} = ∅ for any two distinct α, β ∈ Λ;
(c) {Pα : α ∈ Λ} ⊂ Pm for some m ∈ N.

In fact, by Claim 1, since P is a cl1-osed k-network for X, for every α ∈ Γ , there exists a finite subfamily 
Fα ⊂ P such that

{xn(α) : n ∈ N} ∪ {xα} ⊂ ∪Fα ⊂ cl1(∪Fα) ⊂ X \ {xβ : β ∈ Γ, β �= α}.

Then for every α ∈ Γ , there exist a Pα ∈ P and a subsequence {xnk
(α)}k∈N of {xn(α)}n∈N such that

{xnk
(α) : k ∈ N} ⊂ Pα ⊂ cl1(Pα) ⊂ X \ {xβ : β ∈ Γ, β �= α}.

Thus for any two distinct α, β ∈ Γ , xβ �∈ cl1(Pα), whence Pα �= Pβ . Further, there exists some m ∈ N such 
that Pm contains uncountably many Pα’s.

Therefore, there exists a subset Λ of Γ with |Λ| = ω1 such that for every α ∈ Λ, there are a non-trivial 
sequence {yn(α)}n∈N of points of X converging to xα in X and a Pα ∈ P satisfying {yn(α) : n ∈ N} ⊂ Pα

and {Pα : α ∈ Λ} ⊂ Pm for some m ∈ N.
Since Pm is compact-finite in X,

{yn(α) : n ∈ N} \
⋃

β∈Λ\{α}
{yn(β) : n ∈ N}

is infinite and is written by {zn(α) : n ∈ N} for every α ∈ Λ. Thus Claim 2 is proved.
Now, let Y be the quotient space obtained from X by identifying the subset E = {xα : α ∈ Λ} of X to 

a point, i.e., Y = X/E. Write Y = {∞} ∪ (X \ E). Let q : X → Y be the natural quotient mapping. Then 
the mapping q is closed by [8, Example 2.4.12], whence Y is a T1-space.

Claim 3. The subspace C = {∞} ∪
⋃

α∈Λ{zn(α) : n ∈ N} of Y is a closed copy of Sω1 .
Let Z =

⋃
α∈Λ({zn(α) : n ∈ N} ∪ {xα}). Since X is a sequential space and Pm is compact-finite in X, 

the subspace Z is closed in X, q|Z : Z → q(Z) is a closed mapping and

Z =
⊕
α∈Λ

({zn(α) : n ∈ N} ∪ {xα}).

Thus the subspace C = q(Z) of Y is a closed copy of Sω1 . This completes the proof of the lemma. �
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Lemma 4.4. ([12]) Let X be the product space Sω1 × Sω1 . Then the tightness of X is uncountable.

Lemma 4.5. ([6, Theorem 4.11]) Let X be a topological space and w = ε1x1 + ε2x2 + . . .+ εnxn be a reduced 
word in APn(X), where xi ∈ X, εi = ±1 for i = 1, 2, . . . , n. Let B denote the collection of all sets of the 
form ε1U1 + ε2U2 + . . .+ εnUn, where for i = 1, 2, . . . , n, the set Ui is a neighborhood of xi in X when εi = 1
and Ui = {xi} when εi = −1. Then B is a neighborhood base at the point w in the subspace APn(X) of 
AP(X).

It was shown in [16,28] that if X is a completely regular space, then FP(X) (AP(X)) contains a closed 
homeomorphic copy of the product space Xn for every n ∈ N. However, if the separation “completely 
regular” is weakened to be T1, we still in AP(X) construct a homeomorphic copy of the product space Xn

for every n ∈ N by Lemma 4.5.

Lemma 4.6. Let X be a topological space. Then the following hold.
(1) FP(X) contains a homeomorphic copy of the product space Xn for every n ∈ N [6, Theorem 4.12].
(2) AP(X) contains a homeomorphic copy of the product space Xn for every n ∈ N.

Proof. Consider the mapping Φ : Xn → AP(X) defined by

Φ(x1, x2, . . . , xn) = x1 + 2x2 + . . . + 2n−1xn

for every (x1, x2, . . . , xn) ∈ Xn. Put m = 1 + 2 + . . . + 2n−1, whence

Φ(Xn) ⊂ APm(X).

From the continuity of the multiplication in AP(X), it follows that Φ is continuous. The set X being a 
free algebraic basis for AP(X), the mapping Φ is one-to-one. It suffices to show that Φ : Xn → Φ(Xn) is 
an open mapping. Let U be a non-empty open subset of Xn and (x1, x2, . . . , xn) ∈ U . Then there exists a 
neighborhood Ui in X of xi for every i ≤ n such that

U1 + 2U2 + . . . + 2n−1Un = Φ(U1 × U2 × . . .× Un) ⊂ Φ(U).

By Lemma 4.5, U1 +2U2 + . . .+2n−1Un is a neighborhood of the point Φ(x1, x2, . . . , xn) in APm(X). Thus 
Φ(U) is a neighborhood of the point Φ(x1, x2, . . . , xn) in Φ(Xn) and Φ(U) is open in Φ(Xn). �

The case for FP(X) in following Lemma 4.7 was proved in [28, Proposition 2.10]. After a careful check, 
its method also applies to the case for AP(X).

Lemma 4.7. ([28]) Let f : X → Y be a quotient mapping of topological spaces. Then f admits an extension 
to continuous open homomorphisms F (f) : FP(X) → FP(Y ) and A(f) : AP(X) → AP(Y ).

Lemma 4.8. Let f : X → Y be a quotient mapping of topological spaces. If FP(X) or AP(X) has countable 
tightness, then Y contains no closed copy of Sω1 .

Proof. Suppose Y contains a closed copy of Sω1 . By Lemma 4.7, the mapping f admits an extension to 
continuous open homomorphisms F (f) : FP(X) → FP(Y ) and A(f) : AP(X) → AP(Y ). Since FP(X)
(AP(X)) has countable tightness, so does FP(Y ) (AP(Y )). By Lemma 4.6, FP(Y ) (AP(Y )) contains a 
homeomorphic copy of the product space Y 2. Thus Sω1 × Sω1 has countable tightness, which contradicts 
Lemma 4.4. �
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Let X be a topological space. X is called an ℵ0-space [23] if it has a countable k-network. X is called an 
ℵ′

0-space [24] if the subspace X ′ consisting of all non-isolated points in X is an ℵ0-space.

Theorem 4.9. Let X be a Hausdorff k∗-metrizable k-space. If FP(X) or AP(X) has countable tightness, 
then the subspace X ′ consisting of all non-isolated points in X is ω1-compact, and hence X is an ℵ′

0-space.

Proof. Suppose X ′ is not ω1-compact. By Lemma 4.3, there exists a closed mapping f : X → Y such that 
Y contains a closed copy of Sω1 . By Lemma 4.8, Y contains no closed copy of Sω1 . This is a contradiction.

By Lemma 4.1, X is an ℵ′
0-space. �

A regular space with a σ-locally finite k-network is called an ℵ-space [27].

Corollary 4.10. Let X be a k-and-ℵ-space. If FP(X) or AP(X) has countable tightness, then X is an 
ℵ′

0-space.

A topological space is called a Lašnev space if it is a continuous closed image of a metric space. Every 
Lašnev space is a normal k∗-metrizable k-space [3,19].

Corollary 4.11. Let X be a Lašnev space. If FP(X) or AP(X) has countable tightness, then X is an ℵ′
0-space.

A family P of subsets of a topological space X is star-countable if for any P ∈ P, the family {B ∈ P :
B ∩ P �= ∅} is countable. Every regular space with a star-countable k-network is k∗-metrizable [20].

Corollary 4.12. Let X be a regular k-space with a star-countable k-network. If FP(X) or AP(X) has count-
able tightness, then X is an ℵ′

0-space.

Remark 4.13. As is well known, k-and-ℵ-spaces, Lašnev spaces, and regular k-spaces with a star-countable 
k-network do not imply each other, see e.g. [17,20].

The Abelian case of the following corollary, as one of the main results in [16], was obtained by F. Lin et al.

Corollary 4.14. Let X be a metrizable space. If FP(X) or AP(X) has countable tightness, then the subspace 
X ′ consisting of all non-isolated points in X is ω1-compact, i.e., X ′ is separable.

Around Corollary 4.14, it is natural to pose the following question.

Question 4.15. Let X be a metrizable space. Does AP(X) have countable tightness if the subspace X ′ con-
sisting of all non-isolated points in X is ω1-compact?

A family P of subsets of a topological space X is compact-countable if every compact subset of X intersects 
only countably many elements of P.

Question 4.16. The condition “k∗-metrizable k-space” in Theorem 4.9 can be weakened to the condition 
“k-space with a compact-countable k-network”?

Next, we convert to discuss the countable tightness of free (Abelian) paratopological groups on 
k-semistratifiable k-spaces.

Lemma 4.17. ([18]) Let f : X → Y be a closed mapping, where X is a Hausdorff k-semistratifiable k-space. 
Then the set Frf−1(y) is Lindelöf for every y ∈ Y if Y contains no closed copy of Sω1 .
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Theorem 4.18. Let X be a Hausdorff k-semistratifiable k-space. If FP(X) or AP(X) has countable tightness, 
then the subspace X ′ consisting of all non-isolated points in X is ω1-compact.

Proof. Suppose X ′ is not ω1-compact. Then there exists an uncountable set D such that D ⊂ X ′ and D
has no accumulations in X, thus D is a closed discrete subset of X. Further, the space D is not Lindelöf. 
Put Y = X/D. Write Y = {∞} ∪ (X \ D). Let q : X → Y be the natural quotient mapping. Then the 
mapping q is closed by [8, Example 2.4.12].

Claim. IntXq−1(∞) = IntXD = ∅.
Assume IntXD �= ∅. Pick a point x and an open subset V in X such that x ∈ V ⊂ D. Then V \ {x} ⊂ D

is closed in X, and so {x} = V \ (V \ {x}) is open in X. On the other hand, {x} ⊂ X ′ is not open in X. 
This is a contradiction.

Thus Frq−1(∞) = q−1(∞) \ IntXq−1(∞) = D is not Lindelöf. By Lemma 4.17, Y contains a closed copy 
of Sω1 , which contradicts Lemma 4.8. This completes the proof of the theorem. �
Remark 4.19. (1) There exists a first-countable k-semistratifiable regular space which is not k∗-metrizable 
[4, Example 9.2].

(2) There exists a first-countable Hausdorff space with a star-countable k-network (hence, with a 
σ-compact-finite k-network), which is not k-semistratifiable [17, Example 1.5.8].

5. First-countability and strongly Fréchetness of free paratopological groups

It is well known that first-countable compact Hausdorff spaces are not necessarily metrizable. However, 
we shall show that FP2(X) is first-countable if and only if FP2(X) is metrizable for a regular space X, 
which need a few auxiliary lemmas.

A quasi-uniformity U [9] on a set X is a filter on X ×X such that

(1) every member U of U contains the diagonal �X = {(x, x) : x ∈ X} of X;
(2) for every U ∈ U , there exists a V ∈ U such that V ◦ V = {(x, z) ∈ X × X : there is y ∈

X such that (x, y) ∈ V and (y, z) ∈ V } ⊂ U .

A subfamily B of a quasi-uniformity U on a set X is a base for U if every element of U contains an element 
of B. Given a topological space X, a quasi-uniformity U on the set X is compatible with the space X if 
{U(x) : U ∈ U} is a neighborhood base at x for every x ∈ X, where U(x) = {y ∈ X : (x, y) ∈ U}. The fine 
quasi-uniformity of a topological space X is defined as the supremum of all quasi-uniformities compatible 
with the space X.

Let X be a topological space and FN (X) be the fine quasi-uniformity of X. The cardinal function fq(X)
is defined by

fq(X) = min{|B| : B is a base for FN (X)}.

Lemma 5.1. ([7]) Let X be a topological space and FN (X) be the fine quasi-uniformity of X. Then

B = {j2(U) ∪ k2(U) : U ∈ FN (X)}

is a neighborhood base at the identity e in FP2(X), where j2 : X ×X → Fa(X) and k2 : X ×X → Fa(X)
are defined by j2(x, y) = x−1y and k2(x, y) = yx−1 for every (x, y) ∈ X ×X respectively.

Recall that the character χ(X) of a topological space X [8] is defined by
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χ(X) = supx∈Xχ(x,X),

where

χ(x,X) = min{|B| : B is a neighborhood base at x ∈ X}

for every x ∈ X.

Lemma 5.2. Let X be a topological space and κ be an infinite cardinal number. Then the following conditions 
are equivalent.

(1) χ(FP2(X)) ≤ κ;
(2) fq(X) ≤ κ.

Proof. (1) ⇒ (2). By Lemma 5.1, B = {j2(U) ∪k2(U) : U ∈ FN (X)} is a neighborhood base at the identity e
in FP2(X). Since χ(FP2(X)) ≤ κ, there exists an S ⊂ FN (X) such that |S| ≤ κ and {j2(U) ∪k2(U) : U ∈ S}
is a neighborhood base at the identity e in FP2(X). We shall show that S is a base for FN (X). In fact, for 
every V ∈ FN (X), there is a U ∈ S such that j2(U) ∪ k2(U) ⊂ j2(V ) ∪ k2(V ) by Lemma 5.1. Thus U ⊂ V

and S is a base for FN (X). Hence, fq(X) ≤ κ.
(2) ⇒ (1). Suppose fq(X) ≤ κ. By Lemma 5.1, χ(e, FP2(X)) ≤ κ. Since C2(X) = FP2(X) \ FP1(X) is 

homeomorphic to a subspace of X̃2 by Lemma 3.5(1) and C2(X) is open in FP2(X),

χ(g,FP2(X)) = χ(g, C2(X)) ≤ χ(X̃2) = χ(X̃) ≤ fq(X) ≤ κ

for every g ∈ C2(X).
Let Z be the usual discrete addition group consisting of all integers and f : X → Z be defined by f(x) = 1

for every x ∈ X. Extend f to a continuous homomorphism f̂ : FP(X) → Z. Hence f̂ |FP2(X) : FP2(X) → Z

is continuous. Put ϕ = f̂ |FP2(X). Then ϕ−1({1}) = X and ϕ−1({−1}) = X−1, whence X ∪X−1 is open in 
FP2(X).

Therefore,

χ(h,FP2(X)) = χ(h,X ∪X−1) ≤ χ(X̃) ≤ fq(X) ≤ κ

for every h ∈ X ∪X−1.
In a word, χ(FP2(X)) ≤ κ. �

Lemma 5.3. ([9]) Let X be a regular space. The fine quasi-uniformity for X has a countable base if and only 
if X is a metrizable space with only finitely many non-isolated points.

A topological space X is called a z-space [13] if every neighbornet of X is normal. Every topological space 
with only finitely many non-isolated points is a z-space [9, Proposition 6.25].

Lemma 5.4. ([15]) A topological space X is a z-space if and only if i2 : X̃2 → FP2(X) is a closed mapping.

Theorem 5.5. For a regular space X, the following are equivalent.

(1) FP2(X) is first-countable;
(2) FP2(X) is metrizable;
(3) X is metrizable and the set of all non-isolated points in X is finite;
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(4) AP2(X) is first-countable;
(5) AP2(X) is metrizable;
(6) APn(X) is first-countable for every n ∈ N.

Proof. The equivalence of items (3), (4), (5), and (6) of the theorem was established in [16, Theorem 5.28].
Lemmas 5.2 and 5.3 imply (1) ⇒ (3).
(3) ⇒ (2). Again by Lemmas 5.2 and 5.3, FP2(X) is first-countable. Since X is a z-space, the mapping 

i2 : X̃2 → FP2(X) is a closed mapping by Lemma 5.4. According to the classic Hanai–Morita–Stone 
Theorem [8, Theorem 4.4.17], FP2(X) is metrizable.

It is obvious that (2) ⇒ (1). �
Question 5.6. Let X be a regular space and n ≥ 3. Is the space FPn(X) or APn(X) is metrizable if it is 
first-countable?

A topological space X is called a Fréchet space [8] if for every A ⊂ X and every x ∈ A, there exists a 
sequence {xn}n∈N of points of A converging x. A topological space X is said to be strongly Fréchet [30] if 
whenever {An}n∈N is a decreasing sequence of subsets of X and x ∈

⋂
n∈N

An, then there is a point xn ∈ An

for every n ∈ N such that the sequence {xn}n∈N converges to the point x. Every first-countable space is 
strongly Fréchet and every strongly Fréchet space is Fréchet.

Lemma 5.7. ([14, Theorem 3.11]) Let X be a completely regular space and A be an arbitrary subset of 
FP(X). If A ∩ FPn(X) is finite for every non-negative integer n, then A is closed discrete in FP(X). The 
same is true for AP(X).

Theorem 5.8. Let X be a completely regular space. Then FP(X) is strongly Fréchet if and only if the space 
X is discrete. The same is true for AP(X).

Proof. Sufficiency. It is evident from the definition of free paratopological groups that if X is discrete, then 
FP(X) is also discrete and hence strongly Fréchet.

Necessity. Suppose X is not discrete. Then FP(X) is also not discrete.

Claim. For every k ∈ N, the identity e ∈
⋃

n≥k Cn(X).

Otherwise, there exist an open neighborhood U in FP(X) of e and an m ∈ N such that U ⊂ FPm(X). 
FP(X) being a paratopological group, pick an open neighborhood V of e in FP(X) such that V m+1 ⊂ U . 
Since FP(X) is not discrete, there exists a point w ∈ V \ {e}, whence wm+1 ∈ V m+1 ⊂ U ⊂ FPm(X). This 
contradicts the fact FPm(X) consist of all words of reduced length ≤ m with respect to the free basis X. 
Hence, the Claim is proved.

Now, because {
⋃

n≥k Cn(X)}k∈N is a decreasing sequence and

e ∈
⋂
k∈N

⋃
n≥k

Cn(X),

from the hypothesis that FP(X) is strongly Fréchet, there exists a point xk ∈
⋃

n≥k Cn(X) for every k ∈ N

such that the sequence {xk}k∈N converges to e. Then the set A = {xk : k ∈ N} is not closed in FP(X). On 
the other hand, A ∩ FPk(X) is finite for every k ∈ N, thus A is closed in FP(X) by Lemma 5.7. This is a 
contradiction.

The argument in the case of AP(X) is exactly the same. �
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Question 5.9. Let X be a completely regular space. Is the space X is discrete if FP(X) or AP(X) is Fréchet?
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