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1. Introduction and preliminaries

The notion of statistical convergence of sequences in real spaces was introduced in 1951 by H. Fast in [8]
and H. Steinhaus in [19], respectively. This concept has been studied by many mathematicians up to date
(see, for example [4,9,10,14]). Recently, the notion of statistical convergence was defined in topological spaces
by G. Di Maio and Lj.D.R. Koéinac in [15].

In this paper we shall study statistical convergence in cone metric spaces. Cone metric spaces have been
actually defined many years ago by several authors and appeared in the literature under different names.
Dj. Kurepa was the first who introduced such spaces in 1934 under the name “espaces pseudo-distenciés” [16].

* The project is supported by the NSFC (Nos. 61379021, 11201414, 11171162, 11471153), the NSF (No. 2013J01029) of Fujian
Province of China and Fujian Province Support College Research Plan Project (No. JK2011031).
* Corresponding author.

E-mail addresses: 1ikd56@126.com (K. Li), shoulin60@163.com (S. Lin), geying@suda.edu.cn (Y. Ge).

http://dx.doi.org/10.1016/j.topol.2015.05.038
0166-8641/© 2015 Elsevier B.V. All rights reserved.



642 K. Li et al. / Topology and its Applications 196 (2015) 641-651

Cone metric spaces are one of many generalizations of metric spaces, and play an important role in fixed point
theory, computer science, and some other research areas as well as in general topology (see, for example
[1,2,5,6,17]). There have been a lot of papers dealing with the theory of cone metric spaces. Recently,
the paracompactness and the metrizability of cone metric spaces have been discussed in [18] and [13],
respectively. In this paper, we shall introduce and investigate statistical convergence in cone metric spaces,
discuss statistically-sequentially compact spaces and characterize statistical completeness of cone metric
spaces. The paper is organized so that introduction is followed by three sections. In Section 2 we familiarize
the reader with the basic notions concerning statistical convergence in cone metric spaces and give some
topological natures of this convergence. In Section 3 we apply idea of statistical convergence to define
statistically-sequential compactness and statistical completeness of cone metric spaces and give an explicit
characterization.

Throughout this paper, the set of positive integers is denoted by N, the set of real numbers with the
standard topology is denoted by R. For undefined terms in the paper the readers can refer to [7,11].

Definition 1.1. ([3]) Let E be a real Banach space and P a subset of E. We call P a cone and (E, P) a cone
space if

(C1) P is non-empty, closed, and P # {0};
(C2) 0<a,beRand 2,y € P=— ax+by € P;
(C3) z€Pand —z € P=z=0.

A partial ordering “<” with respect to P is defined by t <y <= y—cr € P,and z < y < = < y and

z < y indicates y — x € intP, where intP denotes the interior of P (with the topology of the Banach
space F). The relation “<” is transitive and antisymmetric but not in general reflective. In this paper, we
always assume that intP # (), and denote E* = {c € E: 0 < ¢}, i.e., ET = intP.

Let ¢ € ET and e € E. If {a,} is a non-negative sequence in R such that it converges to 0. It is clear
that the sequence {c — ane} in E converges to ¢ € ET. So there is n € N such that ¢ — a,e € ET, ie.,
0 < ¢ — aye. It follows that a,e < ¢ for some n € N.

Definition 1.2. ([12]) Let (F, P) be a cone space, X a non-empty set and d : X x X — E a mapping that
satisfies the following conditions:

(CM1) 0 < d(x,y) for all z,y € X and d(z,y) =0 <=z =y;
(CM2) d(z,y) =d(y,z) for all z,y € X;
(CM3) d(z,y) < d(z,2) +d(z,y) for all z,y,z € X.

Then d is called a cone metric on X and (X, E, P,d) (or shortly, (X,d)) a cone metric space.

The notion of cone metric spaces are generated by replacing positive real numbers with a positive cone
in a Banach space. It is obvious that every metric space is a cone metric space. Every cone metric space
(X, d) is a topological space [20]. In fact, for any ¢ € E*, let B(x,¢) = {y € X : d(z,y) < ¢} (a c-ball in a
cone metric space). Then

B={B(z,c):z€ X,ce ET}

is a base of a topology 7y = {U C X :Vz € U, 3B € B such that xt € B C U} on X. It can be shown that
the topology 74 is Hausdorff and first countable [20].
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Definition 1.3. ([8]) Let A C N, put A(n) ={k € A: k <n}, Vn € N. Then

0(A) = lim inf

[Am)] and 5(A) = lim sup @

n—oo n n—oo

are called lower and upper asymptotic density of the set A, respectively.

If 5(A) = 6(A), then

5(4) = 1im A

n—oo N

is called an asymptotic (or natural) density of the set A. All the three densities, if they exist, are in [0, 1].
A subset A of N is said to be statistically dense if 6(A) = 1.

It is easy to see that 6(N — A) =1 — §(A) for each A C N.

Definition 1.4. ([8]) A sequence {z,} in R is said to be statistically convergent to a point x € R if for each
e >0,

1 1
lim —{k<n:|zy—2| =€} =0,ie, lim —{k<n: |z —2| <e}| =1
n—oo N n—oo N

2. Statistical convergence in cone metric spaces

In this section, we recall the concept of convergence of sequences in cone metric spaces, introduce the
concept of statistical convergence of sequences in cone metric spaces, and present some basic results.

Definition 2.1. ([12]) Let (X, d) be a cone metric space.

(1) Let {z,} be a sequence in X and x € X. If for each ¢ € E™, there is ng € N such that for all n > no,
d(xy,z) < ¢, then {z,} is said to be convergent and {x,} converges to .

(2) Let {x,} be a sequence in X. If for each ¢ € ET, there is ng € N such that for all n,m > no,
d(xp, ) < ¢, then {z,} is called a Cauchy sequence in X.

(3) (X,d) is said to be complete if every Cauchy sequence in X is convergent in X.

According to the sequential convergence and completeness of metric spaces, we give the following defini-
tions about cone metric spaces.

Definition 2.2. Let (X, d) be a cone metric space, and {z,,} a sequence in X. Then

(1) {x,} is said to be statistically convergent to a point x € X, if for each ¢ € ET, we have §{n € N :
d(xn,z) < ¢} = 1. This is denoted by St—nILH;O Ty = .

(2) {xn} is called a statistical Cauchy sequence in X, if for each ¢ € ET, there is ng € N such that
{neN:d(zy,xn,) <c} =1.

(3) (X,d) is said to be statistically complete if every statistical Cauchy sequence in X is statistically con-
vergent.

The statistical convergence of sequences in a cone metric space is a natural generalization of the usual
convergence. Let {x,} be a sequence in a cone metric space (X,d). If lim z, = ¢ € X, then for each
n—oo

c € E*, there is ng € N such that d(z,,z) < ¢,Vn > ng. Thus Vn > ng,
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|A(n)| = [{k < n:d(zg,z) < c}| = n—ng,

and

)]

n—oo n

=1

Hence st- lim x,, = x. Therefore, every convergent sequence is statistical convergent in a cone metric space.
n—oo

The converse is not true.

Example 2.3. ([12]) Let £ = R? with the usual Euclidean norm, P = {(z,y) € £ : x,y > 0}, X = R and
d: X x X — F defined by d(z,y) = (| — y|, @]z — y|), where « > 0 is a constant. Then (X,d) is a cone
metric space.

A sequence {z,} in X is defined by

2
s

n, n=m?meN.

For 2 = 0, we have that d(xn,z) = (1/n,a/n) if n #m? and d(z,,x) = (n,an) if n = m?, and m € N. For
each ¢ € Et, we have

An) ={k <n:d(zp,2) <c} D{k<n:k>n.,k#m? mecN}
for some n. € N. Then
{neN:d(wy,2)<c}=6neN:n>n.,n#m*meN} =1

Consequently, st- lim x,, = z, but the sequence {z,} is not convergent.
n—oo

Example 2.4. Let £ = R? with the usual Euclidean norm, P = {(z,y) € F : 7,y > 0}, X = R and
d: X x X = FE defined by

x Yy x y
d(z,y) = - — ], V3 - .
(@) (|1+|m| 1+|y|| |1+|a:| 1+|y||)

It can easily verify that (X, d) is a cone metric space.
A sequence {z,,} in X is defined by

, 3
xn_{n, n #m?,

1/n, n=m?*meN.

Then {z,} is a statistical Cauchy sequence in X, but it is not statistically convergent.
In fact, for each ¢ € ET, there exists ngp € N such that ng # m? for each m € N and 2/ng < ||¢|. If
n > ng and n # m?> for each m € N, then

n No n o
_ V3 _
1+n 14+ng \/_‘1—1—71 1+ no
n — No 2
=2 < —.
(I+n)(1+no) no

(2, Zno) | = (] DI

Thus
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A) = {k <n:d(zg, 2n,) <} D{k<n:k >ne,k#m® meN}
for some n. € N. Then
S{n €N:d(wp,2n,) <c} = 0{neN:n>n.,n#mmecN} =1

Hence {z,} is a statistical Cauchy sequence in X.
If a € R and n € N with n # m3 for each m € N, then

n a n a 2|n — al
- 3 - SN | b S
1+n 1+|a|’\/_|1+n 1+|CI,||)H (1+n)(1+ lal)

ld(zn, @)l = II(]

Since lim ~—2n-el - _2 0, {z,,} is not a statistically convergent sequence.
nooo (Itn)(A+[a]) = 1+al

The following results can be easily showed by the definitions of statistical convergence of cone metric
spaces.

Lemma 2.5. Let {x,,} and {y,} be two sequences in a cone metric space (X,d).

(1) If st- lim z, = x and st- lim =z, = 1, then © = 7.

n—oo n—oo
(2) st-lim z, =z if and only if st- lim d(z,,z) = 0.
n—0o0 n—0o0
(3) If st- lim z, =z and st- lim y, =y, then st- im d(xn,yn) = d(z,y).
n—o0 n—o00 n—o0

Theorem 2.6. Let {z,} and {z,} be two sequences in a cone metric space (X,d). If st- li_)rn Zn = a, and
n oo

d(xyn,a) < d(zn,a) for each n € N, then st- li_>m Tp = a.

Proof. Since si- lim z, = a, st- lim d(z,,a) = 0 by Lemma 2.5(2), for each ¢ € ET and n € N, we have
n— oo n—oo

{k<n:d(xg,a) <c} D{k<n:d(z,a) <cl,
and
MneN:d(zp,a) <c} >20{neN:d(z,,a) <c}=1.

Consequently, st- lim d(z,,a) =0, i.e., st- lim z, =a. O

n—oo n—oo
Definition 2.7. ([15]) A subsequence {x,, } of a sequence {x,} is statistically dense in {x,} if the index set
{ng : k € N} is a statistically dense subset of N, i.e., 6{ny : k € N} = 1.

Theorem 2.8. Let {z,,} be a sequence in a cone metric space (X,d). Then the following are equivalent:

(1) {xn} is statistically convergent in (X,d);

(2) there is a convergent sequence {yn} in X such that , =y, for almost all n € N;

(3) there is a statistically dense subsequence {xn,} of the sequence {x,} such that the sequence {x,,} is
convergent;

(4) there is a statistically dense subsequence {xy,} of the sequence {x,} such that the sequence {zn,} is
statistically convergent.
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Proof. (1) = (2). Suppose that st- lim z, = a € X. For each ¢ € E*, we have
n— o0

1
d{n eN:d(zp,a) <c} = lim —|{k <n:d(zg,a) <c} =1

n—00 N

Choose e € E with [le] = 1. Since lim 2[{k < n : d(zx,a) < ¢/2}| = 1, there exists n; € N such that
n—o0

Li{k < n:d(zy,a) < e/2}] > 1—1/2 for each n > n;. Choose an increasing sequence {ny} of positive

integers such that 2|{m < n: d(z,.a) < e/2"}| > 1-1/2F for each n > ni. We can assume that ny < njg41

for each k € N. A sequence {y;,} is defined by

Tm, 1<m<ng,
Ym = Tms Mk <M< N1, (T, a) < /25,
a, otherwise.

Let ¢ € E*. Choose k € N with ¢/2% < c. Then d(y,,a) < c for each m > ng. Hence lim v, = a.
m—00
For each ¢ > 0, there exists k € N such that 1/2F < ¢. Fix n € N. If nj, < n < ng,1, then

{mgn:ym;éxm}C{1,2,---,n}—{m<n:d(wm,a)g%},

thus
1 . 1 . e 1
E|{m<n.ym7éxm}| <1- ﬁ|{m<n.d(mm,a) < 2—k}| <gr <e

Hence lim L[{m < n:ym # zm}| =0, ie, 6{m € N: yp, # x,} = 0, therefore 2, = yy, for almost all
m e N.n_)oo

(2) = (3). Suppose that {y,} is a convergent sequence in X such that z,, = y,, for almost all n € N. Let
A={neN:x, =y,}. Then §(A) = 1. Thus {yn}nea is both a convergent sequence and a statistically
dense subsequence of {z,}.

(3) = (4) is obvious. Next, we prove that (4) = (1). Suppose there is a statistically dense subsequence
{zn, } of the sequence {z, } such that the sequence {x,, } is statistically convergent. Set st—klggo Tn, =a€X

and let A = {ny : k € N}. Then §(A) = 1. Since, for each c € BT,
{n eN:d(zp,a) <c} D {nk € N:d(zy,,a) < c},
and
d{n eN:d(zp,a) <c}) = 0({nk € N:d(zp,,a) <c}) =1,

we have st- lim z,, =a. O
n—oo

Corollary 2.9. Every statistically convergent sequence has a convergent subsequence in a cone metric space.
The converse of Corollary 2.9 is not hold, i.e., there is a non-statistically convergent sequence in a cone
metric space such that it has a convergent subsequence. In fact, the sequence {x,} in Example 2.4 has the

convergent subsequence {x,,s}, but the {x,} is not statistically convergent.

Corollary 2.10. Every statistically complete cone metric space is complete.
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Proof. Let (X, d) be a statistically complete cone metric space. If a sequence {z,} is a Cauchy sequence in
(X,d), then {z,,} is a statistical Cauchy sequence in X. Since X is statistically complete, the sequence {z,}
is statistically convergent. There is a subsequence {x,, } of the sequence {z,} such that {z,, } converges to
a point x € X by Corollary 2.9.

For each ¢ € ET, there is ng € N such that d(z,,z,,) < ¢/2 for each n,m > ng. Since klim T, = T,
—00

there exists ko € N such that ny, > ng and d(zy, ,r) < ¢/2. Then d(xy,z) < d(Ty, Tny, ) + d(Ty,,,T) L €
for each m > ng, i.e., lim x,, = x. Hence, (X, d) is a complete cone metric space. O
n— oo

Definition 2.11. A sequence {x,} in a cone metric space (X, d) is said to be statistically bounded if there
exist a € X and ¢ € ET such that 6{n € N: d(z,,a) < c} =1.

Theorem 2.12. Every statistical Cauchy sequence is statistically bounded in a cone metric space.
Proof. Let {z,,} be a statistical Cauchy sequence in a cone metric space (X,d). Fix a € X, and ¢ € Et.
There exists no € N such that §{n € N: d(z,,z,,) <c} =1.

Since ¢ € intP and d(zp,,a) € P, there is an open neighborhood U of ¢ in E such that U C P, thus
U +d(zn,,a) C P by Definition 1.1(C2). Note that U 4+ d(zy,, a) is an open subset of E, and c+d(zy,,a) €
U+ d(zp,,a) C P.So ¢+ d(xn,,a) € ntP, ie., ¢+ d(zn,,a) > 0. Put e = ¢+ d(zy,,a). Then e € ET.

If d(xk, xpn,) < ¢, then

d(zg,a) < d(xg, Tny) + d(Tny,a) < ¢+ d(xp,,a) = e,
thus for each n € N,
{k<n:d(xg,a) <e}D{k<n:dag, xn,) <cl,
and
d{n eN:d(zp,a) <e} 2d{neN:d(xp zy) <c}=1.

Consequently, the sequence {x,} is statistically bounded in X. O
Corollary 2.13. Every statistically convergent sequence is statistically bounded in a cone metric space.

By Example 2.3 we already know that a statistically convergent sequence need not to be convergent. We
can prove that every slowly oscillating and statistically convergent sequence is convergent in a cone metric
space by a similar method in [4].

3. Statistically complete cone metric spaces

We give some definitions related to statistical completeness of cone metric spaces in accordance with a
method in [4].

Definition 3.1. Let (X, d) be a cone metric space, and F' C X. Put

clgeF' = {x € X : there is a sequence {z,} in F such that st- lim x, =z},
n—oo

Fstd =l (F\ {z}).
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The sets clg F', F**4 are called the statistically-sequential closure of F in X and the statistically-sequential
derived set of F' in X, respectively. A set F is said to be statistically-sequentially closed if F' = clgF. Every
point in F**4 is called a statistically-sequential accumulation point of F.

A point x € X is called a statistically-sequential accumulation point of a sequence {z,} in a cone metric
space (X, d), if there is a subsequence {z,,} of the sequence {z,} such that st—kli_{Iolo T, = T.

Definition 3.2. Let (X, d) be a cone metric space.

(1) A subset F of X is said to be statistically-sequentially countably compact if any infinite subset of F' has
at least one statistically-sequentially accumulation point in F.

(2) A subset F' of X is said to be statistically-sequentially compact if whenever {z,} is a sequence in F
there is a subsequence {zy, } of the sequence {xz,} such that st—klirlgo T, =x € F.

Definition 3.3. ([20]) Let A be an open cover of a cone metric space (X, d). An element ¢ € E* is called a
Lebesgue element for the cover A if a subset B of X has an upper bound ¢, then B C A for some A € A.

Lemma 3.4. Fvery open cover of a statistically-sequentially compact cone metric space has a Lebesque ele-
ment.

Proof. Let A = {A,}aer be an open cover of a statistically-sequentially compact cone metric space (X, d).
We can assume that X ¢ A. Suppose that A dose not have a Lebesgue element. Fix ¢ € ET. Then, for each
n € N, there is a non-empty subset B, of X such that = is an upper bound of B, and B,, ¢ A, for each
a € I. Take x,, € B, for each n € N. Since X is statistically-sequentially compact, there is a subsequence
{zn,} of the sequence {z,} such that st—leH;o Tp, = p € X, and there exists a subsequence {z,, } of the
sequence {xy, } such that ngnéo Tp,, =p € X by Corollary 2.9. Since A is an open cover of X, then p € Aq,
for some ap € I. Find ¢; € ET such that B(p,¢1) C Aa,. Then there is mg € N such that d(p, xnkmo) <%
and nfc < 0.

m

0
If v € Bnkmo, then d(z,p) < d(x,mnkmo) + d(xnkmo,p) C—+5 <G +9 =c,ie, Bnkmo -

X Ty

B(p,c1) C Aq,, a contradiction. Hence, A has a Lebesgue element. O
Theorem 3.5. The following are equivalent for a cone metric space (X,d):

(1) X is statistically-sequentially compact;

(2) X is statistically-sequentially countably compact;
(3) X is compact;

(4) X is countably compact.

Proof. (1) = (3). Let (X, d) be a statistically-sequentially compact cone metric space. First, we show that
there exists a finite covering of X consisting of open c¢-balls {B(x,¢)}zex for each ¢ € ET. If not, there
exists ¢ € ET such that X cannot be covered by finitely many c-balls. Construct a sequence {z,} in X as
follows: First, fix a point x; € X, and take a point 2 € X \ B(z1,¢) by X # B(x1,¢). In general, given
{zi}ti<n in X, choose a point x,11 € X \ U,¢,, B(w;,¢) because X # |J,,, B(xi,¢). Then d(zy41,7:) £ ¢
for each i < m, thus {x, : n € N} is a closed discrete subspace of X.

Secondly, we prove that X is compact. Let I/ be an open cover of X. There is § € ET such that § is a
Lebesgue element for the open cover U/ by Lemma 3.4. Put ¢ = %. There exists a finite subset F' of X such
that X = J,.p B(z,c). For each x € F, since 2c is an upper bound of the set B(w, c), there is U, € U such

that B(z,c) C U,. Therefore, {U, },cr is a finite subcover of U. Hence, X is compact.
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(3) = (4) is obvious. (4) = (2) is hold since every cone metric space is first-countable.

(2) = (1). Suppose that X is statistically-sequentially countably compact. Let {z,} be a sequence
in X. Put A = {z, : n € N}, and assume that A is an infinite set. Since X is statistically-sequentially
countably compact, there is z € A**4. Then there is a subsequence {z,, } of the sequence {z,,} such that

st- lim x,, = z. This completes the proof. O
k—o0

Theorem 3.6. Let (X,d) be a cone metric space, and F C X.

(1) If F is statistically-sequentially compact, then F is statistically-sequentially closed.
(2) If X is statistically-sequentially compact and F is statistically-sequentially closed, then F is statistically-
sequentially compact.

Proof. (1) Suppose that F' is a statistically-sequentially compact subset of X. Take any x € clgF. There
is a sequence {z,} in F such that St_nlglolo T, = x. Since F is statistically-sequentially compact, there is
a subsequence {zy,} of the sequence {x,} such that st-kllrgo Tp, =2 € F. Then x = 2’ € F by (1) of
Lemma 2.5. Thus F is statistically-sequentially closed.

(2) Suppose that F' is a statistically-sequentially closed subset of a statistically-sequentially compact
cone metric space X. If {z,,} is a sequence in F, since X is statistically-sequentially compact, there is a

subsequence {z,, } of the sequence {z,} such that st—klim Zn, =« € X. Since F is statistically-sequentially
—00

closed, x € F, i.e., st—klim ZTn, = € F. Hence F is statistically-sequentially compact in X. O
:— 00

Let (X, d) be a cone metric space. A subset A of X is said to be upper bounded [20] if there exists ¢ € ET
such that d(z,y) < ¢ for all z,y € A; the ¢ is called an upper bound of A.
A useful criterion for statistical completeness of cone metric spaces is the following.

Theorem 3.7. A cone metric space (X, d) is statistically complete if and only if for every decreasing sequence
{Fyn} of the statistically-sequentially closed non-empty subsets of X, if there is a sequence {b,} converging
to 0 in E such that by, is an upper bound of the set F,, for each n € N, then (), oy Fn is a single-point set.

Proof. Assume the cone metric space (X, d) is statistically complete. Let {F), } be a decreasing sequence of
the statistically-sequentially closed non-empty subsets of X such that there is a sequence {b,} converging
to 0 in E such that b, is an upper bound of the set F,, for each n € N. Choose a sequence {z,} in X such
that z,, € F},,¥n € N. Then the sequence {z,} is a statistical Cauchy sequence. In fact, for each ¢ € ET,
since ILm b, = 0, there is ny € N such that b,, < c for all n > ng. Thus x,,, 2., € F,,, for each n,m > ny,

n oo
therefore d(xy, Tm) < bp, < c. Consequently, it follows that {z,} is a Cauchy sequence, so a statistical
Cauchy sequence.
By the statistical completeness of (X, d), the sequence {x,,} is statistically convergent, say st- lim z,, = x.
n—oo

For each n € N, since {zy : k > n} C F,, and F, is statistically-sequentially closed in X, we have x € F,,.
Thus © € (,en Fn- Iy € N,en Fn» then 2,y € F, for each n € N. Thus d(z,y) < c for each ¢ € E*.

Hence, we have d(z,y) = 0, therefore z =y, i.e., F,, is a single-point set.

neN

Conversely, suppose that {z,,} is a statistical Cauchy sequence in (X, d). Fixe € ET. For each k € N, there
exists np € N such that 6{n € N : d(2pn,Zn,) < 5552} = 1. We can assume ny < ng41 and d(2n,,, Tn,) <
sirr for each k € N.

For each k € N, let by = 57 and

e e
Fy, = clgB(xn,, W) =cla{y € X 1 d(zn,,v) € W}
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Then klim by = 0 and by, is an upper bound of Fy. If y € Fy11, then d(y, wy,,,) < 5z and d(Tn,,,; Tn,) <
— 00
it thus

(&
d(yvxnk) < d(yv xnk+1) + d(xnk+1’xnk) < W

Therefore y € Fy, i.e., Fy11 C F}. Thus there exists z € ﬂneN F,.
We prove that the sequence {z,} statistically converges to x. For any ¢ € E™T, since lim 5w = 0in F,
n—oo

there exists k € N such that 57 < ¢ for each n > k. We have d(z, ;) < 55z by @ € Fi. Thus for each
n > ng, if d(z,, Ty,) < 557, then

e e
d(@n, v) < d(Tn, Tny,) + d(Tn,, T) < okt d + SRtz < ok <ec
Therefore for each m € N,
e
{n<m:d(x,,z) <c} D{n<m:d(x,,zn,) < W}’

and
e
0{neN:d(z,,x) <c} =2 d{neN:d(z,,x,,) < W} =1.

Thus d{n € N : d(x,,z) < ¢} = 1, so the sequence {z,} statistically converges to x. Hence (X,d) is
statistically complete. O

Corollary 3.8. Fvery compact cone metric space is statistically complete.

Proof. Let (X,d) be a compact cone metric space. Suppose that {F,} is a decreasing sequence of
statistically-sequentially closed non-empty subsets of X, and there is a sequence {b,} converging to 0
in E such that b, is an upper bound of the set F,, for each n € N. Since each F,, is statistically-sequentially
closed, it follows from Theorem 3.6 that F,, is compact in X, thus (1, .y F # 9. Since by, is an upper bound
of the set F), for each n € N, and the sequence {b,} converges to 0 in E, it is easy to see that (), .y Fy is a
single-point set. Hence, (X, d) is statistically complete by Theorem 3.7. O
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