Questions and Answers in General Topology

>-+<+*_++>+-<

Vol. 6, No. 1 1988

Editorial Board

Honorary Editor: K. Morita

Managing Editors: M. Atsuji, J. Nagata

Editors: T. Ishii, T. Isiwata, Y. Katuta, R. Nakagawa

A. Okuyama, S. Sakai, T. Tanaka

Associate Editors: T. Hoshina, II. Ohta, Y. Tanaka,

J. Terasawa, Y. Yasui

Secretarial Staff: Y. Hattori, A. Koyama, K. Yamada

Publisher: Symposium of General Topology

Q & A in General Topology, Vol. 6 (1988)

A STUDY OF PSEUDOBASES

Shou Lin
Department of Mathematics, Ningde Teachers'
College, Ningde, Fujian, CHINA

ABSTRACT. In this paper, we discuss the relationship between pseudobases and k-networks. It is shown that a regular space with a point countable pseudobase is an \aleph_0 -space, and that a regular space with a σ -hereditarily closure-preserving (closed) pseudobase if and only if it either is an \aleph_0 -space or is a σ -closed discrete space which all compact subsets are finite.

All spaces are T₄

Let X be a topological space. A collection $\[\[\] \]$ of subsets of X is a pseusobase for X[1] if whenever K is a compact subset of an open set U of X, then K \subset P \subset U for some P \in $\[\] \]$. A collection $\[\] \]$ of subsets of X is a k-network for X if whenever K is a compact subset of an open set U of X, then K \subset UP' \subset U for some finite subcollection $\[\] \]$ of $\[\] \]$. In this paper, we discuss the

relationship between pseudobases and k-networks. Obviously, a regular space with a countable (G-closure-preserving, G-cushioned pair) pseudobase is equivalent to the space with a countable (G-closure-preserving, G-cushioned pair) k-network. The following question raised: Is a regular space with a point countable (G-hereditarily closure-preserving) pseudobase equivalent to the space with a point countable (G-hereditarily closure-preserving) k-network?

We answer this question nagetively by proving that a regular space with a point countable pseudo-base has a countable pseudobase, and that a regular space with a G-hereditarily closure-preserving pseudobase has a G-locally finite k-network.

Theorem 1. A Hausdorff space with a point countable pseudobase has a countable pseudobase.

Proof. Suppose X is a Hausdorff space with a point countable pseudobase. Let \mathcal{G} be a point countable pseudobase for X. For each $x \in X$, take $y \in X-\{x\}$. Put

$$G = \{X-cl(P) : y \in P = cl(P) = X-\{x\}, P \in \mathcal{P}\}.$$

Then it is a countable family of open subsets of X, and $x \in \cap \mathcal{G}$. If $z \in X - \{x\}$, there exists an open set V of X such that $\{z,y\} \subset V \subset \operatorname{cl}(V) \subset X - \{x\}$ because X is Hausdroff. Then $\{z,y\} \subset P \subset V$ for some $P \in \mathcal{P}$. So $\operatorname{cl}(P) \subset X - \{x\}$ and $z,y \in P$. Thus $z \notin \cap \mathcal{G}$, and $\{x\} = \cap \mathcal{G}$. Therefore each point of X is a $G_{\mathcal{F}}$ in X. We assert that X is separable. In fact, take $x \in X$. There exists a countable family $\{V_n : n \in N\}$ of open—sets of X such that $\{x\} = \bigcap \{V_n : n \in N\}$. Let $\{P \in \mathcal{G}\} : x \in P\} = \{P_m : m \in N\}$. For each $n, m \in N$, if $P_m - V_n = \emptyset$, let $a_{n,m} = x$; if $P_m - V_n \neq \emptyset$, take $a_{n,m} \in P_m - V_n$. Put $A = \{a_{n,m} : n, m \in N\} \cup \{x\}$.

Then cl(A) = X. For each open subset G of X, we can assume that $G-\{x\} \neq \emptyset$. Take $y \in G-\{x\}$. There exists $n \in N$ such that $y \in X-V_n$. Since $\{y,x\} \subset V_n UG$, $\{y,x\} \subset P_m \subset V_n UG$ for some $m \in N$. So $y \in P_m - V_n \subset G$, and $a_{n,m} \in G$. Hence X is separable. Now, let $A = \{x_i : i \in N\}$ be a countable dense subset of X. Put $\mathcal{P}' = \{P \in \mathcal{P} : P \cap A \neq \emptyset\}$. The \mathcal{P}' is countable. For a non-empty compact subset K of an open set

U of X, there exists ie N such that $x_i \in U$. So $KU\{x_i\} \subset U$. Thus there exists $P \in \mathcal{P}$ such that $KU\{x_i\} \subset P \subset U$; i.e. $P \in \mathcal{P}'$ and $K \subset P \subset U$. Hence \mathcal{P}' is a countable pseudobase for X. This completes the proof of the theorem.

A regular space with a countable pseudobase is an X-space. By Theorem 1, a regular space is an %-space if and only if it has a point countable pseudobase. Since there exists a regular, non-separable space with a σ -locally finite knetwork(for example, a non-separable metric space), there exists a regular space with Glocally finite k-network which has not a point countable pseudobase. A collection 9 of subsets of X is a p-pseudobase for X if whenever K is a compact subset of X-{x1, there exists PeG such that $K \subset P \subset X - \{x\}$. Is a regular space with a countable p-pseudobase an X.-space? Let X be a regular, countable space which is not an X - space [1, Example 12.4]. Let $X = \{x_n : n \in \mathbb{N}\}$. For each $n \in \mathbb{N}$, put $P_n = X - \{x_n\}$. Then $\{P_n : n \in \mathbb{N}\}$ is a

countable p-pseudobase for X, but X is not an %-space.

In the second part of this paper, we discuss the spaces with a 6-hereditarily closure-preserving pseudobase. A collection \mathcal{P} of subsets of a space X is hereditarily closure-preserving (HCP) if, whenever a subset $C(P) \subset P$ is chosen for each $P \in \mathcal{P}$, the resulting collection $G = \{C(P); P \in \mathcal{P}\}$ is closure-preserving. A collection G of subsets of X is weakly hereditarily closure-preserving (WHCP) if, whenever a point $x(P) \in P$ is chosen for each $P \in \mathcal{P}$, the resulting set $\{x(P): P \in \mathcal{P}\}$ is a closed discrete subspace of X. A space X is $\mathcal{K}_{\mathcal{P}}$ -compact if every closed discrete subspace of X is countable.

Lemma 1. An %,-compact space with a G-WHCP k-network has a countable k-network.

Proof. Suppose X is an \Re -compact space with a \mathbb{C} -WHCP k-network \mathbb{C} . Let $\mathbb{C} = \bigcup_{n \in \mathbb{N}} \mathbb{C}_n$, where $\mathbb{C}_n = \mathbb{C}_n$ and \mathbb{C}_n is WHCP. For each $n \in \mathbb{N}$, put

 $A_n = \{x \in X : \mathcal{G}_n \text{ is not point countable at } x\}.$ Then $\{P-A_n : P \in \mathcal{P}_n\}$ is countable, and A_n is a countable closed discrete subspace of X. In fact, if $\{P-A_n : P \in \mathcal{P}_n\}$ is not countable, there exists $\{P_a : a < \omega_i\}$ such that the $(P_a - A_n)$'s are distinct and non-empty. For each a<w,, take a point x &P -A_n. Since \mathcal{G}_n is WHCP and X is \mathcal{K}_n -compact, $\{x_a:a<\omega_n\}$ is countable. So there exists an uncountable subset A of ω , and $x \notin A_n$ such that $x_n = x$ for each a \in A, a contradiction. Hence $\{P-A_n : P \in \mathcal{G}_n\}$ is countable. If $Z=\{z_h \in A_n : h \in H\}$ with $|H| \le N_1$, Since P_n is not point countable at point z_h, by wellordering principle and transfinite induction we can obtain a subcollection $\{P_h : h \in H\}$ of \mathcal{G}_n such that $z_h \in P_h$ and the P_h 's are distinct. Since In is WHCP, Z is a closed discrete substace of X. By the χ -compactness of X, A_n is a countable closed discrete subspace of X. Therefore $\mathcal{G}_n' = \{P-A_n : P \in \mathcal{G}_n\} \cup \{\{x\} : x \in A_n\} \text{ is a coun-}$ table collection. If K is a compact subset of an

open set U of X, there exists $n \in \mathbb{N}$ and a finite subcollection \mathcal{G}_n^* of \mathcal{G}_n such that $\mathrm{Kc} U \mathcal{G}_n^* \subset U$. Since every closed discrete subspace of a compact space is finite, $\mathrm{K} \cap \mathrm{A}_n$ is finite. So

 $\mathcal{G}_n^{**} = \{P-A_n : P \in \mathcal{G}_n^*\} \cup \{\{x\} : x \in K \cap A_n\}$

is a finite subcollection of \mathcal{P}_n , and $K \subset \mathcal{P}_n^* \times_{c} U$. Hence $\bigcup_{n \in \mathbb{N}} \mathcal{P}_n$ is a countable k-network for X.

This completes the proof of the Lemma.

Lemma 2. A space with a σ -WHCP pseudobase either has a countable pseudobase or is the space which all compact closed subsets are finite.

Proof. Suppose a space X has a G-WHCH pseudobase. Let $\mathcal{P} = \bigcup_{n \in \mathbb{N}} \mathcal{P}_n$ be a G-WHCP pseudobase for X, where each \mathcal{P}_n is WHCP. If X has not a countable pseudobase, and X has an infinite compact closed subset K, then X is not an \mathcal{N}_i compact space by Lemma 1, and there exists a non-closed countable subset $C = \{x_n : n \in \mathbb{N}\} \subset K$. Since X is not \mathcal{N}_i -compact, there exists a closed discrete subspace $A \subset X$ such that $|A| = \mathcal{N}_i$. Then

|A-K| = N, because $K \cap A$ is finite. Let $A-K = \{x_n : a < \omega_i\}$. For each $a < \omega_i$, let $V_n = X - \{x_h : a\}$ \neq b< ω ,}, then V_A is an open set of X and $KU\{x_a\}\subset V_a$: So there exists $n(a)\in N$ and $P_a(n(a))$ such that $KU(x_a) \subset P_a \subset V_a$. Thus there exists an uncountable subset Λ of ω , and meN such that $n(a) = m \text{ when } a \in \Lambda$. Since $x_a \in P_a \subset X - \{x_b\}$ when a \neq b, the P_a's are distinct. So $\{P_a : a \in \Lambda\}$ is WHCP. Now, by $\{x_n : n \in N\} \subset \bigcap \{P_n : a \in \Lambda\}$, there exists mutually distinct $a_n \in \Lambda$ such that $x_n \in P_{a_n}$ for each $n \in \mathbb{N}$. Hence $C = \{x_n : n \in \mathbb{N}\}$ is closed, a contradiction. Therefore X either has a countable pseudobase or is a space which all compact closed subsets are finite. This completes the proof of the Lemma.

A space X has %-tightness if for each A<X with $x \in cl(A)$, there exists $H \subset A$ with $|H| \leq \%$, and $x \in cl(H)$.

Corollary. If a space with a σ -WHCP pseudobase has χ ,-tightness, then it either has a

countable pseudobase or is a *T*-closed discrete space which all compact closed subsets are finite.

Suppose a space X with a σ -WHCP pseudobase has \mathcal{K} -tightness. Let $\mathcal{G} = \bigcup_{n \in \mathbb{N}} \mathcal{G}_n$ be a σ -WHCP pseudobase for X, where each \mathcal{G}_n is WHCP. We can assume that X has not countable pseudobase. Then for each x & X, Pis not point countable at x. In fact, suppose \mathcal{P} is point countable at x for some x & X. Since X has not a countable pseudobase, X is not an \,-compact space by Lemma 1. There exists a closed discrete subspace $\{x_{2} : a(\omega_{i}) \subset X-\{x\}$. For each $a(\omega_{i})$, put $V_a = X - \{x_h : a \neq b < \omega_i\}$. Then V_a is an open subset of X and $\{x,x_a\} \subset V_a$. So $\{x,x_a\} \subset P_a \subset V_a$ for some $P_a \in \mathcal{Y}$. Hence the P_a 's are distinct, and $x \in P_a$ for each azw, a contradiction. Therefore 9 is not point countable at each x & X.

For each $n \in \mathbb{N}$, put $X_n = \left\{ x \in X : \mathcal{P}_n \text{ is not point countable at } x \right\}.$

Then $X = \bigcup_{n \in \mathbb{N}} X_n$. We will show that each X_n is a closed discrete subspace of X; i.e. if A < X_n, then A is closed in X. Since X has X,-tightness, it is sufficient to show that each subset A of X, with Alsk is closed discrete in X. We can assume that $A = \{x_a : a < \omega_i\}$. By transfinite induction, we can obtain a subcollection $\{P_a: a<\omega_i\}$ of \mathcal{G}_n such that $x_a \in P_a$ and the P_a 's are distinct. Since \mathcal{G}_n is WHCP, A is closed discrete in X. Hence each X, is a closed discrete subspace of X. According to Lemma 2, all compact subsets of X are finite. This completes the proof of the Corollary.

A collection \mathcal{F} of subsets of a space X is a (modk)-network for X if there exists a covering \mathcal{H} of X by compact sets such that, whenever $K \subset U$ with $K \in \mathcal{H}$ and U open in X, then $K \subset P \subset U$ for some $P \in \mathcal{F}$. A space with a σ -locally finite closed (mod k)-network is called a strong Σ -space. A space (X,T) is a β -space if there is a function $g: N \times X \to V$

such that (1) $x \in g(n,x)$; (2) if $x \in g(n,x_n)$, then the set $\{x_n : n \in \mathbb{N}\}$ has a cluster point in X. Obviously, G-spaces are strong Σ -spaces, and strong Σ -spaces are β -spaces.

Lemma 3. Suppose X is a space which all compact subsets are finite. Then X is a σ -closed discrete space if it satisfies any one of the following:

- (a) X is a strong Σ-space.
- (b) X is a regular β -space which each point is a G_{δ} in X.

Proof. (a) Suppose a space X is a strong Σ space which all compact subsets are finite. Let $\mathcal{G} = \bigcup_{n \in \mathbb{N}} \mathcal{G}_n$ be a σ -locally finite closed (modk)network for X with respect to a covering \mathcal{K} of X by non-empty compact sets, where each \mathcal{G}_n is a locally finite family of closed subsets of X. We can assume that \mathcal{G} is closed under finite intersections. For a $K \in \mathcal{K}$, let $\mathcal{G}(K) = \{P \in \mathcal{G} : K \subset P\}$. Then $\mathcal{G}(K)$ is countable. So $\mathcal{G}(K) = \{P_i : i \in N\}$, and put $K_n = \bigcap_{i \leq n} P_i$. Then $K \subset K_n \in \mathcal{G}(K)$. We assert

that there exists $n \in \mathbb{N}$ such that K_n is finite. In fact, if each K_n is infinite, then there exists a subset $\Lambda : \{x_n : n \in \mathbb{N}\} \subset X - \mathbb{K}$ such that $x_1 \in \mathbb{K}_1 - \mathbb{K}$ and $x_{n+1} \in K_{n+1}-KU[x_1,x_2,...,x_n]$ because K is finite. If $cl(A) \cap K = \emptyset$, there exists $P_i \in \mathcal{Y}(K)$ such that $K \subset P_i \subset X-cl(A)$. So $x_i \in K_i \subset P_i \subset X-\{x_i\}$, a contradiction. Thus $(cl(A)-A) \cap K = cl(A) \cap K \neq \emptyset$. Take $x \in (cl(A)-A) \cap K$. Since K is finite, there exist open sets V,U of X such that $x \in V,K-\{x\} \subset U$ and $V \cap U = \emptyset$. There exists a subsequence $\{x_n\}$ of $\{x_n\}$ such that $\{x_n: i \in N\} \subset V$ because x is a cluster point of $\{x_n\}$. For an open neighbourhood G of x in X, since Kc (VAG) UU, there exists $P_m \in \mathcal{P}(K)$ such that $K \subset K_m \subset P_m \subset (V \cap G) \cup U$. So $x_n \in K_n$, $\cap V \subset K_m \cap V \subset G$ when $i \ge m$. This proves that the sequence $\{x_n\}$ converges to x. Hence [x]U[x_n:ieN] is an infinite-compact subset of X, a contradiction. Therefore there exists

neN such that K_n is finite.

For each n & N, put

$$\mathcal{F}_{n} = \{P \in \mathcal{P}_{n} : P \text{ is finite}\}$$

$$= \{\{x_{a,1}, x_{a,2}, \dots, x_{a,n(a)}\} : a \in A_{n}\}.$$
Then
$$\bigcup_{n \in \mathbb{N}} \mathcal{F}_{n} \text{ is a } \sigma\text{-locally finite (modk)-}$$

network for X. So $X = \bigcup_{n \in \mathbb{N}} (\bigcup_{n \in \mathbb{N}} \mathcal{J}_n)$. For each

 $n,m \in \mathbb{N}$, put $M_{n,m} = \{x_{a,m} : a \in A_n\}$. Then $M_{n,m}$ is a closed discrete subspace of X, and $X = \bigcup_{n,m \in \mathbb{N}} M_{n,m}$.

Hence X is a V-closed discrete space.

- (b) Suppose a regular space (X,t) is a β space which all compact subsets are finite, and
 which each point is a G_{δ} in X. Then there exists
 a function $g: N \times X \to I$ such that
 - (1) $x \in g(n+1,x) \subset cl(g(n+1,x)) \subset g(n,x);$
 - (2) $\bigcap_{n \in \mathbb{N}} g(n, x) = \{x\};$
- (3) if $x \in g(n,x_n)$, the sequence $\{x_n\}$ has a cluster point in X. For each $n \in \mathbb{N}$, put $X_n = \{x \in X : x \in \bigcap_{z \neq X} (X-g(n,z))\}$

For each $y \in X$, if $z \in g(n,y) \cap X_n$, then z = y.

Thus

$$g(n,y) \cap X_n = \begin{cases} \{y\}, & \text{if } y \in X_n \\ \emptyset, & \text{if } y \notin X_n \end{cases}$$

So X is a closed discrete subspace of X. We will show that $X = \bigcup_{n \in \mathbb{N}} X_n$. If $X - \bigcup_{n \in \mathbb{N}} X_n \neq \emptyset$, take $x \in X \bigcup_{n \in \mathbb{N}} X_n$. For each $n \in \mathbb{N}$, there exists $x_n \neq x$, such that $x \in g(n,x_n)$ because $x \notin X_n$. If $\{x_n : n \in N\}$ is finite, there exists a subsequence $\{x_n\}$ of $\{x_n\}$ such that $x_n = x_n$ for each ie N. Since $x \in g(n_i, x_{n_i}) \subset g(i, x_{n_i}) = g(i, x_{n_i}), x \in \{0\}, g(i, x_{n_i}), x \in \{0\}, x \in \{$ i.e. $x = x_{n_1}$, a contradiction. Thus $\{x_n : n \in \mathbb{N}\}$ is infinite. We can assume that the x_n's are distinct. Let q be a cluster point of {x_n} in X. Then there exists a subsequence $\{x_n\}$ of $\{x_n\}$ such that $x_{n_i} \in g(i,q)$ for each $i \in N$. Put $F_n = cl(x_n : i \ge n)$, then $F_{n+1} \subset g(n,q)$. Since

 $x \in g(i, x_{n_i})$, the sequence $\{x_{n_i}\}$ has a cluster point in X. So $\emptyset \neq \bigcap_{n \in \mathbb{N}} F_n \subset \{q\}$; i.e. q is a unique cluster point of $\{x_{n_i}\}$ in X. And since every subsequence of $\{x_{n_i}\}$ has a cluster point in X, the sequence $\{x_{n_i}\}$ converges to q. Hence $\{x_{n_i}: i \in \mathbb{N}\} \cup \{q\}$ is an infinite compact subset of X, a contradiction. Therefore $X = \bigcup_{n \in \mathbb{N}} X_n$, and X is a \mathbb{C} -closed discrete space. This completes the proof of the Lemma.

Theorem 2. The following are equivalent for a regular space X:

- (a) X is a space with a G-HCP closed pseudobase.
- (b) X is a space with a σ -HCP pseudobase.
- (c) X is an \aleph_{o} -space, or a σ -closed discrete space which all compact subspaces are finite.

Proof. (a) \Rightarrow (b) is obvious. If X is a regular space with a σ -HCP pseudobase, then X has a σ -closure-preserving net. So X is a σ -space. By

Lemma 2 and Lemma 3, (c) holds. If X is an \aleph_{\bullet} space, then X has a σ -HCP closed pseudobase. If
X is a σ -closed discrete space which all compact
subsets are finite, let $X = \bigcup_{n \in \mathbb{N}} X_n$, where each

 X_n is a closed discrete subspace of X. For each $n \in \mathbb{N}$, put $\mathcal{G}_n = \{P \subset \bigcup_{i \le n} X_i : |P| \le n\}$.

Then \mathcal{G}_n is a HCP family of closed subsets of X. Since all compact subsets of X are finite, $\inf_{n \in \mathbb{N}} n$ is a σ -HCP closed pseudobase for X. (a) holds.

Aregular space with a σ -locally finite k-network is called an χ -space.

Corollary. A regulary space with a G-HCP pseudobase is an X-space.

Let X be a non-separable metric space. Then $Z = [0,1] \oplus X$ is an \mathcal{N} -space, but it has not a σ -HCP pseudobase by Lemma 2.

Example. There exists a regular space X with a closure-preserving (modk)-network such that all compact subsets of X are finite. But

X has not a G-WHCP k-network.

Proof. Let $X = \{p\} \cup \{x_a : a < \omega_i\}$, where $p \notin \{x_a : a < \omega_i\}$. We define the topology for X as follows: a subset V of X is open if and only if X-V either is countable or includes p. Then we can easily see that X is a regular, Hausdorff space. Put $\mathcal{P} = \{ \{p, x_n\} : a < \omega_i \}$. Then \mathcal{P} is a closure-preserving closed cover of X because any subset of X missing p is open. Thus φ is a closure-preserving (modk)-network for X with respect to the covering φ of X by compact sets. If K is an infinite subset of X, put $F = K-\{p\}$. Then $\{X-F\} \cup \{\{x\}: x \in F\}$ is an open cover of K which has not any finite subcover of K. So all compact subsets of X are finite. Since X is Lindelöf, X has not a σ -WHCP k-network by Lemma 1.

REFERENCES

[1] E.Michael, 水。-spaces, J.Math.Mech., 15(1966), 983-1002.

Received January 8, 1988