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In this paper, we attempt to extend some three space properties in topological 
groups to paratopological groups. The following results are established: (1) metriza-
bility of compact (resp., sequentially compact, countably compact) subsets is a 
three space property in the class of k-gentle paratopological groups; (2) let N be 
a second-countable topological subgroup of an Abelian paratopological group G; if 
the quotient paratopological group G/N has a countable network, then so does G; 
(3) let G be an Abelian paratopological group and N a topological subgroup of G; 
if both N and G/N are first-countable, then so is G.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Recall that a semitopological group is a group with a topology such that the multiplication in the group 
is separately continuous. A paratopological group is a group with a topology such that the multiplication is 
jointly continuous. If G is a paratopological group and the inverse operation of G is continuous, then G is 
a topological group. The reader can find a lot of recent progress about paratopological and semitopological 
groups in the survey article [18].

Let P be a (topological, algebraic, or a mixed nature) property. We consider the following general problem. 
Let N be a closed invariant subgroup of a paratopological group G such that both N and the quotient 
paratopological group G/N have P. When can we conclude that G has P? Recall that, for topological 
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groups, if the property P holds in this problem, then we say that P is a three space property [4]. In fact, 
the list of three space properties in topological groups is quite long. It includes compactness [8], local 
compactness [16], pseudocompactness [5], metrizability [9], etc. In 2006, M. Bruguera and M. Tkachenko 
[4] studied some properties of compact, countably compact, pseudocompact, and functionally bounded sets 
which are preserved or destroyed when taking extensions of topological groups. Recently, the convergence 
phenomena in the extensions of topological groups were studied in [13].

However, much less is known about three space properties in paratopological groups (see [18]). One of 
the first results in this direction was established by Ravsky [14] which can now be reformulated as follows: 
Being a topological group is a three space property in the class of paratopological groups. According to 
M.I. Graev’s theorem that metrizability is a three space property in topological groups [9], it is natural 
to ask whether the M.I. Graev’s theorem can be extended to paratopological groups. The answer is no. 
There exists a non-metrizable completely regular paratopological Abelian group G which contains a closed 
discrete subgroup H such that the quotient group G/H is metrizable (see [12, Example 3.3]). However, the 
following question was posed by A.V. Arhangel’skǐı and M. Tkachenko [2]:

Question 1.1. ([2, Open problem 7.3.6]) Let f be an open continuous homomorphism of a regular paratopolog-
ical group G onto a metrizable topological group H such that the kernel of f is metrizable. Is G metrizable?

In 2013, P. Li and L. Mou [11, Example 3.2] constructed an example1 which shows that Question 1.1 has 
a negative answer.

In this paper, we try to study some properties which are preserved or destroyed when taking extensions 
of paratopological groups. The paper is organized as follows. In Section 2 we investigate the extensions of 
paratopological groups about compact type sets. We show that the properties of local compactness, com-
pactness, connection, etc, are three space properties in paratopological groups (see Theorem 2.3), and that 
metrizability of compact (resp., sequentially compact, countably compact) subsets is a three space property 
in the class of k-gentle paratopological groups (see Theorem 2.7). In Section 3, we study the extensions 
of Abelian paratopological groups. The following results are established. (1) Let N be a second-countable 
topological subgroup of an Abelian paratopological group G; if the quotient paratopological group G/N has 
a countable network, then so does G (see Theorem 3.4). (2) Let G be an Abelian paratopological group and 
N a topological subgroup of G; if both N and G/N are first-countable, then so is G (see Theorem 3.8).

All spaces are assumed to be Hausdorff, unless otherwise is stated explicitly. Let G be a paratopological 
group, N a closed (invariant) subgroup of G. Recall that the quotient mapping π : G → G/N is always 
open. Indeed, for any subset U of G, we have π−1(π(U)) =

⋃
{aN : a ∈ U} = UN =

⋃
{Un : n ∈ N}, and 

if U is open then so is the union on the right.
The character of a point x (resp., a subset F ) in a topological space X is denoted by χ(x, X)

(resp., χ(F, X)), in which χ(x, X) = min{|B| : B is a local base at x of X} + ω, χ(F, X) = min{|B| :
B is a neighborhood base at F in X} + ω. Similar, the character of a topological space X is denoted by 
χ(X), in which χ(X) = sup{χ(x, X) : x ∈ X}.

2. The extensions of paratopological groups about compact type sets

A topological property P is called an inverse fiber property [4] if (*) f : X → Y is a continuous and 
surjective mapping such that both the space Y and the fibers of f have P, then X also has P. If the conclusion 
in (*) holds under the additional assumption that the domain X is compact (countably compact), we say 
that P is an inverse fiber property for compact (countably compact) sets.

1 It is worth mentioning that the authors also independently constructed this example, which was not published.



L.-H. Xie, S. Lin / Topology and its Applications 180 (2015) 91–99 93
The following lemma was proved in [4] and [13]. For the sake of completeness we give the proof of the 
case of sequentially compact sets.

Lemma 2.1. The first axiom of countability is an inverse fiber property for compact, countably compact [4, 
Proposition 2.8] and sequentially compact [13, Lemma 2.4] sets.

Proof. Let f : X → Y be a continuous and surjective mapping. Suppose that all sequentially compact 
subsets of the space Y and of the fibers f−1(y) (∀y ∈ Y ) are first-countable. Take an arbitrary sequentially 
compact set C ⊂ X. The continuous image K of C is sequentially compact, so that K is first-countable by 
our assumption. To complete the proof it suffices to show that C is first-countable. Take an arbitrary point 
x ∈ C, put y = f(x); and let g = f |C : C → K. From the facts that sequential compactness is inherited 
by closed sets and that every sequentially compact subset of a first-countable space is closed it follows that 
g is a closed mapping. The set Cx = g−1(y) = C ∩ f−1(f(x)) is sequentially compact as a closed subset 
of C, so that Cx is first-countable by our assumption; as we know that K is first-countable, it follows that 
χ(x, C) ≤ ω by [6, 3.7.F]. This proves χ(C) ≤ ω, i.e., C is first-countable. �

Let P be a topological property. A space X is called P-compact if every subset with the property P of 
X is compact. The following result was proved in the paper [13]. For the sake of completeness we give its 
proof.

Lemma 2.2. If the property P is preserved by continuous mappings and also inherited by closed sets, then 
the property P-compact is an inverse fiber property.

Proof. Let f : X → Y be a continuous and surjective mapping such that both the space Y and the fibers 
of f are P-compact. Take an arbitrary P-subset C ⊂ X. The continuous image D of C is a P-subset of Y , 
so that D is compact by our assumption. Let g = f |C : C → D. We shall prove that g is a perfect mapping, 
i.e., g is a closed mapping with compact fibers. For each y ∈ D the set g−1(y) = C ∩ f−1(y) ⊂ f−1(y) is 
a P-subset as a closed subset of C, so that g−1(y) is compact by our assumption. On the other hand, if 
K is closed in C, then K is P-subset in X, so that f(K) = g(K) is P-subset in Y ; by our assumption, 
g(K) is compact, and thus closed in D, because we already know that D is compact. This proves that g is 
a perfect mappings. From the fact the compactness is inverse invariants of perfect mappings it follows that 
C = g−1(D) is compact. This completes the proof. �
Theorem 2.3. The following are three space properties in the class of regular paratopological groups:

(a) local compactness;
(b) compactness;
(c) connectedness;
(d) every compact set being first-countable;
(e) every countably compact set being first-countable;
(f) every sequentially compact set being first-countable;
(g) every countably compact set being compact;
(h) every sequentially compact set being compact.

Proof. Let G be a paratopological group and N a closed invariant subgroup of G.

(a) Suppose that both N and the quotient paratopological group G/N are locally compact. It suffices 
to prove that G is locally compact. From the fact that every locally compact paratopological group is a 
topological group [18, Theorem 3.3], it follows that both N and G/N are topological groups. Note that 
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the fact that being a topological group is a three space property in the class of paratopological groups [14, 
Lemma 4], so that G is a topological group. In addition, local compactness is a three space property in the 
class of topological groups [2, Corollary 3.2.6], so that G is locally compact.

(b) Suppose that both N and the quotient paratopological group G/N are compact. It suffices to prove 
that G is compact. In view of the proof in (a), we have that G, N and G/N are topological groups. Note 
that compactness is a three space property in the class of topological groups [2, Corollary 3.2.6], so that G
is compact.

(c) Suppose that both N and the quotient paratopological group G/N are connected. It suffices to prove 
that G is connected. Suppose by contradiction that G is not connected. Thus there exist two non-empty 
disjoint open sets U, V in G such that G = V ∪ U . The space N being connected implies that xN is also 
connected for each x ∈ G, so that either xN ⊂ U or xN ⊂ V . Let π : G → G/N be the canonical quotient 
mapping. Thus one readily verifies that π(U) and π(V ) are two non-empty disjoint open sets in G/N such 
that G/N = π(V ) ∪π(U), which implies that G/N is not connected. This contradiction completes the proof.

The statements of both (d)–(f) and (g)–(h) directly follow from Lemmas 2.1 and 2.2, respectively. �
Remark 2.4.

(1) There exists an example [2, Example 1.5.9] which shows that both (a) and (b) in Theorem 2.3 cannot 
be extended to semitopological groups.

(2) In view of Theorem 2.3’s proof, one can easily extend (c)–(h) to semitopological groups.
(3) Theorem 2.3 improves some results in [2,4,13].

Let f : X → Y be a mapping. The mapping f is called k-gentle if for each compact subset F of X the 
image f(F ) is also compact. A paratopological group G is called k-gentle [1] if the inverse mapping x → x−1

is k-gentle.

Lemma 2.5. The mapping g : X → X−1 defined by g(x) = x−1 is continuous for every k-subspace X of G, 
where G is a k-gentle paratopological group.

Proof. Let D be a compact subspace of X. One readily check that the restriction g|D : D → D−1 (= g(D))
is continuous, because G is a k-gentle paratopological group. It is well known that a mapping f of a k-space 
F to a topological space Y is continuous if and only if for every compact subspace Z ⊂ F the restriction 
f|Z : Z → Y is continuous [6, Theorem 3.3.21], so that g is continuous. �
Proposition 2.6. The following conditions are equivalent for a k-gentle paratopological group G.

(a) all compact (resp., sequentially compact, countably compact) subspaces of G are first-countable;
(b) all compact (resp., sequentially compact, countably compact) subspaces of G are metrizable.

Proof. The implication (b) ⇒ (a) is obvious; it remains to show that (a) ⇒ (b). Suppose that X is an arbi-
trary non-empty compact (resp., sequentially compact, countably compact) subset of G. By our assumption, 
X is first-countable, and thus is a k-space; it follows from Lemma 2.5 that the mapping g : X → X−1 de-
fined by g(x) = x−1 is continuous, because G is a k-gentle paratopological group. Therefore, the space X−1

is compact (resp., sequentially compact, countably compact) as the continuous image of X, so that X−1

is first-countable by our assumption. Observe that the compactness, sequential compactness and countable 
compactness are preserved by the finite Cartesian product in the first-countable spaces, so that XX−1 is a 
compact (resp., sequentially compact, countably compact) subspace as the continuous image of X ×X−1, 
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and thus is first-countable by our assumption. Consider the mappings j : X × X → X × X−1 and 
i : X × X−1 → XX−1 defined by j(x, y) = (x, y−1) and i(x, y) = xy, respectively. One readily check 
that the mapping f = i ◦ j : X × X → XX−1 is continuous; clearly the identity e ∈ XX−1 with a local 
countable base in XX−1, we have that Δ = f−1(e) is a Gδ-set in X ×X, i.e., X has a Gδ-diagonal, so that 
it follows from the fact that every Hausdorff countably compact space with a Gδ-diagonal is metrizable [10, 
Corollary 7.6] that X is metrizable, because both compactness and sequential compactness imply countable 
compactness. �
Theorem 2.7. Metrizability of compact (resp., sequentially compact, countably compact) subsets is a three 
space property in the class of k-gentle paratopological groups.

Proof. Let G be a k-gentle paratopological group and N a closed invariant subgroup of G such that all com-
pact (resp., sequentially compact, countably compact) subsets in both N and the quotient paratopological 
group G/N are metrizable. From Theorem 2.3 it follows that all compact (resp., sequentially compact, count-
ably compact) subsets of G are first-countable, so the statement directly follows from Proposition 2.6. �

Clearly, every topological group is a k-gentle paratopological group, so we have the following:

Corollary 2.8. Metrizability of compact [4, Theorem 3.2] (resp., sequentially compact [13, (e) of Theo-
rem 2.6], countably compact [4, Corollary 3.3]) subsets is a three space property in the class of topological 
groups.

Let X be a topological space. A subset A of X is called sequentially closed if no sequence of points of 
A converges to a point not in A. X is called sequential [7] if each sequentially closed subset of X is closed. 
A space X is called Fréchet at a point x ∈ X if x ∈ A ⊂ X there is a sequence {xn}n in A such that {xn}n
converges to x in X. A space X is called Fréchet [7] if it is Fréchet at every point x ∈ X. A space X is 
called strongly Fréchet at a point x ∈ X if whenever {An}n is a decreasing sequence of subsets in X and 
x ∈

⋂
n∈ω An, there exists xn ∈ An for each n ∈ ω such that the sequence xn → x. A space X is called 

strongly Fréchet [17] if it is strongly Fréchet at every point x ∈ X. Fréchet spaces (resp., strongly Fréchet 
spaces) are also called Fréchet–Urysohn spaces (resp., strongly Fréchet–Urysohn spaces).

It is obvious that first-countable spaces =⇒ strongly Fréchet spaces =⇒ Fréchet spaces =⇒ sequential 
spaces.

Lemma 2.9. ([13, Lemma 2.3]) If all countably compact (resp., sequentially compact) subsets of a topological 
space X are sequential, then all countably compact (resp., sequentially compact) subsets of X are closed.

Proposition 2.10. If every compact (resp., countably compact, sequentially compact) subspace of a k-gentle 
paratopological group G is Fréchet, then every compact (resp., countably compact, sequentially compact) 
subspace of G is strongly Fréchet.

Proof. Let A be a compact (resp., countably compact, sequentially compact) subset of G. By our assump-
tion, A is Fréchet, and thus is closed in G by Lemma 2.9. Suppose that {An}n∈ω is a decreasing sequence 
of subsets in A with a ∈

⋂
n∈ω An. We can assume that a is an accumulation point of A. By the Fréchet 

property of A one can find a sequence {an}n∈ω in A \ {a} converging to a. Clearly the set B = a−1A is 
closed, compact (resp., countably compact, sequentially compact) and the sequence {a−1an}n∈ω converges 
to e, where e is the identity of G, so that we have, for each n ∈ ω, the closure of the set Bn = a−1An being 
included in B, e ∈ Bn and bn = a−1an ∈ B \ {e}; since G is a Hausdorff paratopological group, for each 
n ∈ ω we can find an open set Vn containing e such that Vn ∩ bnVn = ∅. By e ∈ Bn we have e ∈ Bn ∩ Vn; 
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putting Cn = bn(Bn ∩ Vn), and therefore, bn ∈ Cn, but e /∈ Cn, because Vn ∩ Cn ⊂ Vn ∩ bnVn = ∅, for each 
n ∈ ω. Put

D =
⋃

{Cn : n ∈ ω}, and S = {e} ∪ {bn : n ∈ ω}.

Then D ⊂
⋃

n∈ω bnBn ⊂ SB.
Observe that the Cartesian product of two compact (resp., sequentially compact, countably compact) 

spaces, if one of which is first-countable, is compact (resp., sequentially compact, countably compact), so 
that the Cartesian product S×B of the spaces S and B is compact (resp., countably compact, sequentially 
compact), because S is compact and metrizable; thus SB is compact (resp., countably compact, sequentially 
compact) as the continuous image of S × B, furthermore, by our assumption we have that SB is Fréchet, 
and thus is closed by Lemma 2.9.

By bn ∈ Cn for each n ∈ ω and bn → e, we have e ∈ D ⊂ SB, so that one can find a sequence 
{dk}k∈ω in D converging to e by the Fréchet property of SB; in addition, as we already know e /∈ Cn for 
each n ∈ ω, the set Cn contains only finitely many terms of the sequence {dk}k∈ω; thus we can assume 
that there is a subsequence {Cnk

}k∈ω of the sequence {Cn}n∈ω such that dk ∈ Cnk
for each k ∈ ω. By 

Cnk
⊂ bnk

Bnk
= bnk

a−1Ank
, for each k ∈ ω we have dk = bnk

a−1xnk
for some xnk

∈ Ank
; one readily 

check that b−1
nk

→ e, because bnk
→ e and G is a k-gentle paratopological group, so that xnk

= ab−1
nk

dk → a

when k → ∞. Take xn = xnk
when nk−1 < n < nk, then xn ∈ An for each n ∈ ω and xn → a. Hence, A is 

strongly Fréchet. �
Lemma 2.11. ([3, Proposition 2.18]) Suppose that X is a regular space, and that f : X → Y is a closed 
mapping. Suppose also that b ∈ X is a Gδ-point in the space F = f−1(f(b)) (i.e., the singleton {b} is a 
Gδ-set in the space F ) and F is Fréchet at b (resp., strictly Fréchet at b). If the space Y is strongly Fréchet, 
then X is Fréchet at b.

Theorem 2.12. Let G be a regular k-gentle paratopological group and H a closed subgroup of G such that all 
compact (resp., countably compact, sequentially compact) subsets of the paratopological group H are first-
countable. If the quotient space G/H has the following property, then so does the paratopological group G.

(a) all compact (resp., countably compact, sequentially compact) subsets are strongly Fréchet.

Proof. From Lemma 2.11 it follows that all compact (resp., countably compact, sequentially compact) 
subsets in G are Fréchet. Therefore, the statement directly follows from Proposition 2.10. �
3. Extensions of Abelian paratopological groups

In this section, we investigate the extensions of Abelian paratopological groups. The following fact is 
known ([2, Problems 4.6.C]).

Let H be a closed and second-countable subgroup of a topological group G. If the quotient space G/H has 
a countable network, then so does G.

This result cannot be extended to paratopological groups as the following shows.

Example 3.1. There exists an Abelian paratopological group G which does not have a countable network, 
but it contains a separable and metrizable subgroup H such that the quotient space G/H has a countable 
network.
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Proof. In [11, Example 3.2] it is provided a first-countable, non-metrizable regular Abelian paratopological 
group G and an open continuous homomorphism f of G onto a separable and metrizable topological group 
H such that the kernel of f is separable and metrizable paratopological group. Clearly, H is a quotient 
group of G with a countable network. However, G does not have a countable network, for otherwise it would 
follow from [15, Proposition 2.3] that G would be second-countable. It is well known that every regular 
space with a countable base is metrizable, so G is metrizable. This contradiction completes the proof. �

However, we have the following Proposition 3.3 and Theorem 3.4.

Lemma 3.2. Suppose that G is a paratopological group and H is a separable subgroup of G. If Y is a separable 
subset of G/H, then π−1(Y ) is also separable in G, where π is the natural homomorphism of G onto the 
quotient space G/H.

Proof. Let B be a countable, dense subset of Y . Since H is separable, there exists a countable, dense subset 
Mb of π−1(b) for each b ∈ B. Put M =

⋃
b∈B Mb. Then M is a countable subset of π−1(Y ), and is dense in 

π−1(B). Since π is an open mapping of G onto G/H, π restricting to π−1(Y ) is also an open mapping of 
π−1(Y ) onto Y . Therefore, M = π−1(B) = π−1(B) = π−1(Y ) by [2, Lemma 1.5.22]. Hence, M is dense in 
π−1(Y ), i.e., π−1(Y ) is separable. �
Proposition 3.3. Let N be a second-countable topological subgroup of an Abelian paratopological group G. If 
the subspace Y of G/N has a countable network, then so does π−1(Y ), where π is the natural homomorphism 
of G onto the quotient space G/N .

Proof. Let e be the identity of G. Since both N and Y have a countable network, it follows from Lemma 3.2
that X = π−1(Y ) is separable. We fix a countable, dense subset {bn : n ∈ ω} in X. One can find a decreasing 
sequence {Un : n ∈ ω} of symmetric open sets in G satisfying that U2

n+1 ⊂ Un for each n ∈ ω and that 
{Un∩N : n ∈ ω} is a base at e of open neighbourhoods in N . In fact, since N is a first-countable topological 
group and G is an Abelian paratopological group, one can easily find a decreasing sequence {U ′

n : n ∈ ω} of 
open sets in G such that U ′2

n+1 ⊂ U ′
n for each n ∈ ω and that {U ′

n ∩N : n ∈ ω} is a base at e of symmetric 
open neighbourhoods in N . We put Un = U ′

nU
′−1
n for each n ∈ ω. Since G is Abelian and every element of 

{U ′
n ∩N : n ∈ ω} is symmetric, one readily check that the sequence {Un : n ∈ ω} is the required.
Fix a countable network {Pn : n ∈ ω} in Y . To finish the proof, it is sufficient to establish the following:

Claim 1. {π−1(Pi) ∩ Ukbj : i, j, k ∈ ω} is a network in X.

Take any g ∈ X and open set V in G such that g ∈ V ∩ X. Since G is a paratopological group, one 
can find an open neighborhood O at e in G such that O2g ⊂ V . From the fact that {Um ∩ N : m ∈ ω}
is a local base for N at e it follows that there exists i ∈ ω such that Uig ∩ gN ⊂ Og. Since {bn : n ∈ ω}
is dense in X and {Pn : n ∈ ω} is a network for Y , there exist k1, k2 ∈ ω such that bk1 ∈ Ui+2g and 
π(g) ∈ Pk2 ⊂ π(Ui+1g ∩Og) ∩ Y . To proof of Claim 1, it suffices to establish the following:

Claim 2. g ∈ π−1(Pk2) ∩ Ui+2bk1 ⊂ V ∩X.

First, clearly, g ∈ π−1(Pk2). Since Ui+2 = U−1
i+2 and bk1 ∈ Ui+2g, we have g ∈ Ui+2bk1 . Thus g ∈

π−1(Pk2) ∩ Ui+2bk1 .
Secondly, take any z ∈ π−1(Pk2) ∩ Ui+2bk1 . Since Pk2 ⊂ π(Ui+1g ∩ Og) ∩ Y , we have z ∈ π−1(Pk2) ⊂

(Ui+1g ∩ Og)N ∩ X = (Ui+1 ∩ O)gN ∩ X. In additional, z ∈ Ui+2bk1 and bk1 ∈ Ui+2g, thus, we have 
z ∈ Ui+2bk1 ⊂ Ui+2Ui+2g ⊂ Ui+1g ⊂ U2

i+1g ⊂ Uig. It implies that U2
i+1g ∩ (G \ Uig) = ∅, which is 

equivalent to Ui+1g ∩ Ui+1(G \ Uig) = ∅ by Ui+1 = U−1
i+1. Thus, we have z /∈ Ui+1(G \ Uig), in particular, 
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z /∈ (Ui+1 ∩ O)(G \ Uig). Since z ∈ (Ui+1 ∩ O)gN , one can easily obtain that z ∈ (Ui+1 ∩ O)(gN ∩ Uig), 
which implies that z ∈ (Ui+1 ∩O)(gN ∩ Uig) ∩X ⊂ O2g ∩X ⊂ V ∩X by (gN ∩ Uig) ⊂ Og ⊂ V . �

According to Proposition 3.3, the following is obvious.

Theorem 3.4. Let N be a second-countable topological subgroup of an Abelian paratopological group G. If the 
quotient paratopological group G/N has a countable network, then so does G.

Remark 3.5. (a) The condition ‘N is second-countable’ in Theorem 3.4 cannot be weakened to ‘N has a 
countable network’, since there is an Abelian topological group G which does not have a countable network, 
but it contains a closed subgroup H with a countable network such that the quotient paratopological group 
G/H has also a countable network [19].

(b) From Example 3.1 it follows that the condition ‘N is a topological group’ cannot be replaced by ‘N
is a paratopological group’ in Theorem 3.4.

Question 3.6. Can the condition ‘Abelian’ in Theorem 3.4 be omitted?

Corollary 3.7. Let N be a second-countable locally compact subgroup of an Abelian paratopological group G. 
If the quotient paratopological group G/N has a countable network, then so does G.

Proof. Since every locally compact paratopological group is a topological group [18, Theorem 3.3], the 
statement directly follows from Theorem 3.4. �
Theorem 3.8. Let G be an Abelian paratopological group and N a topological subgroup of G. If both N and 
G/N are first-countable, then so is G.

Proof. Let π : G → G/N be a natural quotient mapping and e the identity in G. Since G is a paratopological 
group and N a first-countable topological group, one can easily find a decreasing sequence {W ′

n : n ∈ ω} of 
open sets in G such that W ′2

n+1 ⊂ W ′
n for each n ∈ ω and that {W ′

n ∩N : n ∈ ω} is a base at e of symmetric 
open neighbourhoods in N . We put Wn = W ′

nW
′−1
n for each n ∈ ω. Since G is an Abelian paratopological 

group, the decreasing sequence {Wn : n ∈ ω} of symmetric open sets satisfies that W 2
n+1 ⊂ Wn for each 

n ∈ ω and that {Wn ∩ N : n ∈ ω} is a base at e of open neighbourhoods in N . We also fix a sequence 
{Un : n ∈ ω} at e of open neighbourhoods in G such that {π(Un) : n ∈ ω} is a base at π(e) in G/N . Now 
put Bi,j = Wi ∩ Uj for i, j ∈ ω. To finish the proof, it suffices to establish the following:

Claim. The family η = {Bi,j : i, j ∈ ω} is a base for G at e.

Take any open neighbourhood O in G at e. Then there is an open set V in G such that e ∈ V ⊂ V 2 ⊂ O. 
Since the sequence {Wn ∩N : n ∈ ω} is a base at e of open neighborhoods in N , there is m ∈ ω such that 
Wm ∩ N ⊂ V ∩ N ⊂ V . Similarly, we can also find j ∈ ω such that π(Uj) ⊂ π(Wm+1 ∩ V ), since π is an 
open mapping. We claim that Bm+1,j = Wm+1 ∩ Uj ⊂ O, which completes the proof of Claim above.

Take any y ∈ Bm+1,j . We have y ∈ (Wm+1 ∩ V )N by π(y) ∈ π(Uj) ⊂ π(Wm+1 ∩ V ). By Wm+1 = W−1
m+1

and W 2
m+1 ⊂ Wm, we have y /∈ Wm+1(G \ Wm) by y ∈ Wm+1. Therefore, y ∈ (Wm+1 ∩ V )(Wm ∩ N) ⊂

V 2 ⊂ O. �
Corollary 3.9. Let N be a topological subgroup of an Abelian paratopological group G. If both N and the 
quotient paratopological group G/N are second-countable, then so is G.

Proof. From Theorems 3.4 and 3.8 it follows that G is first-countable with a countable network. Thus, the 
statement directly follows from [15, Proposition 2.3]. �
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Corollary 3.10. Let N be a locally compact subgroup of an Abelian paratopological group G. If both N and 
the quotient paratopological group G/N are second-countable, then so is G.

Proof. Since every locally compact paratopological group is a topological group [18, Theorem 3.3], the 
statement directly follows from Corollary 3.9. �

It is worth mentioning that there exists an Abelian paratopological group G containing a locally compact 
subgroup H such that both H and the quotient space G/H are metrizable, but G is not metrizable [12]. 
Therefore, the condition ‘second-countable’ in Corollaries 3.9 and 3.10 cannot be replaced by ‘metrizable’.

Corollary 3.11. Let G be an Abelian paratopological group and N a locally compact subgroup of G. If both 
N and G/N are first-countable, then so is G.

Proof. Since every locally compact paratopological group is a topological group [18, Theorem 3.3], the 
statement directly follows from Theorem 3.8. �
Question 3.12. (a) Can the condition ‘Abelian’ in Theorem 3.8 be omitted? (b) Can the condition ‘N is a 
topological subgroup’ be replaced by ‘N is a paratopological subgroup’ in Theorem 3.8?
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