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Abstract. Let f : X → Y be a map. f is a sequence-covering map [25]

if whenever {yn} is a convergent sequence in Y there is a convergent se-

quence {xn} in X with each xn ∈ f−1(yn); f is an 1-sequence-covering

map [14] if for each y ∈ Y there is x ∈ f−1(y) such that whenever {yn}
is a sequence converging to y in Y there is a sequence {xn} converging to

x in X with each xn ∈ f−1(yn). In this paper, we mainly discuss the

sequence-covering maps on generalized metric spaces, and give an affirma-

tive answer to a question in [13] and some related questions, which improve

some results in [13, 16, 28], respectively. Moreover, we also prove that open

and closed maps preserve strongly monotonically monolithity, and closed

sequence-covering maps preserve spaces with a σ-point-discrete k-network.

Some questions about sequence-covering maps on generalized metric spaces

are posed.

1. Introduction

A study of images of topological spaces under certain sequence-covering maps

is an important question in general topology [9, 11, 12, 13, 15, 18, 19, 20, 28].

S. Lin and P.F. Yan proved that each sequence-covering and compact map on

metric spaces is an 1-sequence-covering map [18] . Recently, the authors proved

that each sequence-covering and boundary-compact map on metric spaces is an
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1-sequence-covering map [13]. Also, the authors posed the following question in

[13] :

Question 1.1. [13, Question 3.6] Let f : X → Y be a sequence-covering and

boundary-compact map. Is f an 1-sequence-covering map if X is a space with a

point-countable base or a developable space?

In this paper, we shall give an affirmative answer to Question 1.1.

In [16], the second author proved that if X is a metrizable space and f is a

sequence-quotient and compact map, then f is a pseudo-sequence-covering map.

Recently, the authors proved that if X is a metrizable space and f is a sequence-

quotient and boundary-compact map, then f is a pseudo-sequence-covering map

[13]. Hence we have the following Question 1.2.

Question 1.2. Let f : X → Y be a sequence-quotient and boundary-compact

map. Is f a pseudo-sequence-covering map if X is a space with a point-countable

base or a developable space?

On the other hand, P.F. Yan, S. Lin and S.L. Jiang proved that each closed

sequence-covering map on metric spaces is an 1-sequence-covering map [28].

Hence we have the following Question 1.3.

Question 1.3. Let f : X → Y be a closed sequence-covering map. Is f an 1-

sequence-covering map if X is a regular space with a point-countable base or a

developable space?

In this paper, we shall we give an affirmative answer to Question 1.2, which im-

proves some results in [13] and [16], respectively. Moreover, we give an affirmative

answer to Question 1.3 when X has a point-countable base or X is g-metrizable.

In [27], V.V. Tkachuk introduced the strongly monotonically monolithic spaces.

In this paper, we also prove that strongly monotonically monolithities are pre-

served by open and closed maps, and spaces with a σ-point-discrete k-network

are preserved by closed sequence-covering maps.

2. Definitions and terminology

Let X be a space. For P ⊂ X, P is a sequential neighborhood of x in X if

every sequence converging to x is eventually in P .

Definition 1. Let P =
⋃
x∈X Px be a cover of a space X such that for each

x ∈ X, (a) if U, V ∈ Px, then W ⊂ U ∩ V for some W ∈ Px; (b) Px is a network
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of x in X, i.e., x ∈
⋂
Px, and if x ∈ U with U open in X, then P ⊂ U for some

P ∈ Px.

(1)P is called an sn-network for X if each element of Px is a sequential

neighborhood of x in X for each x ∈ X. X is called snf -countable [15], if X has

an sn-network P such that each Px is countable.

(2)P is called a weak base [1] for X if G ⊂ X is open in X if and only if for

each x ∈ G there is a P ∈ Px with P ⊂ G. X is g-metrizable [26] if X is regular

and has a σ-locally finite weak base.

Definition 2. Let f : X → Y be a map.

(1) f is a compact (resp. separable) map if each f−1(y) is compact (separable)

in X;

(2) f is a boundary-compact(resp. boundary-separable) map if each ∂f−1(y)

is compact (separable) in X;

(3) f is a sequence-covering map [25] if whenever {yn} is a convergent

sequence in Y there is a convergent sequence {xn} in X with each

xn ∈ f−1(yn);

(4) f is an 1-sequence-covering map [14] if for each y ∈ Y there is x ∈ f−1(y)

such that whenever {yn} is a sequence converging to y in Y there is a

sequence {xn} converging to x in X with each xn ∈ f−1(yn);

(5) f is a sequentially quotient map [5] if whenever {yn} is a convergent

sequence in Y there is a convergent sequence {xk} in X with each

xk ∈ f−1(ynk
);

(6) f is a pseudo-sequence-covering map [9, 10] if for each convergent sequence

L in Y there is a compact subset K in X such that f(K) = L;

It is obvious that

1-sequence-covering maps - sequence-covering maps
��
�*

pseudo-sequence-covering maps

HHHj
sequential quotient maps.

Remind readers attention that the sequence-covering maps defined the

above-mentioned are different from the sequence-covering maps defined in [9],

which is called pseudo-sequence-covering maps in this paper.
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Definition 3. [23] Let A be a subset of a space X. We call an open family N
of subsets of X is an external base of A in X if for any x ∈ A and open subset U

with x ∈ U there is a V ∈ N such that x ∈ V ⊂ U .

Similarly, we can define an external weak base for a subset A for a space

X.

Throughout this paper all spaces are assumed to be Hausdorff, all maps are

continuous and onto. The letter N will denote the set of positive integer numbers.

Readers may refer to [6, 8, 15] for unstated definitions and terminology.

3. Sequence-covering and boundary-compact maps

Let Ω be the class of all topological spaces such that, for each compact

subset K ⊂ X ∈ Ω , K is metrizable and also has a countable neighborhood base

in X. Indeed, E.A. Michael and K. Nagami in [23] has proved that X ∈ Ω if and

only if X is the image of some metric space under an open and compact-covering1

map. It is easy to see that if a space X is developable or has a point-countable

base, then X ∈ Ω (see [4] and [27], respectively).

In this paper, when we say an snf -countable space Y , it is always assumed

that Y has an sn-network P = ∪{Py : y ∈ Y } such that Py is countable and

closed under finite intersections for each point y ∈ Y .

Lemma 3.1. Let f : X → Y be a sequence-covering and boundary-compact map,

where Y is snf -countable. For each non-isolated point y ∈ Y , there exists a point

xy ∈ ∂f−1(y) such that whenever U is an open subset with xy ∈ U , there exists a

P ∈ Py satisfying P ⊂ f(U)

Proof. Suppose not, there exists a non-isolated point y ∈ Y such that for every

point x ∈ ∂f−1(y), there is an open neighborhood Ux of x such that P 6⊆ f(Ux) for

every P ∈ Py. Then ∂f−1(y) ⊂ ∪{Ux : x ∈ ∂f−1(y)}. Since ∂f−1(y) is compact,

there exists a finite subfamily U ⊂ {Ux : x ∈ ∂f−1(y)} such that ∂f−1(y) ⊂ ∪U .

We denote U by {Ui : 1 ≤ i ≤ n0}. Assume that Py = {Pn : n ∈ N} and Wy =

{Fn =
⋂n
i=1 Pi : n ∈ N}. It is obvious that Wy ⊂ Py and Fn+1 ⊂ Fn, for every

n ∈ N. For each 1 ≤ m ≤ n0, n ∈ N, it follows that there exists xn,m ∈ Fn\f(Um).

Then denote yk = xn,m, where k = (n− 1)n0 +m. Since Py is a network at point

y and Fn+1 ⊂ Fn for every n ∈ N, {yk} is a sequence converging to y in Y .

Because f is a sequence-covering map, {yk} is an image of some sequence {xk}
converging to x ∈ ∂f−1(y) in X. From x ∈ ∂f−1(y) ⊂ ∪U it follows that there

1Let f : X → Y be a map. f is called a compact-covering map [23] if in case L is compact

in Y there is a compact subset K of X such that f(K) = L.
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exists 1 ≤ m0 ≤ n0 such that x ∈ Um0
. Therefore, {x} ∪ {xk : k ≥ k0} ⊂ Um0

for

some k0 ∈ N. Hence {y} ∪ {yk : k ≥ k0} ⊂ f(Um0). However, we can choose an

n > k0 such that k = (n − 1)n0 + m0 ≥ k0 and yk = xn,m0
, which implies that

xn,m0 ∈ f(Um0). This contradictions to xn,m0 ∈ Fn \ f(Um0). �

The next lemma is obvious.

Lemma 3.2. Let f : X → Y be 1-sequence-covering, where X is snf -countable.

Then Y is snf -countable.

Theorem 3.3. Let f : X → Y be a sequence-covering and boundary-compact

map, where X is first-countable. Then Y is snf -countable if and only if f is an

1-sequence-covering map.

Proof. Necessity. Let y be a non-isolated point in Y . Since Y is snf -countable,

it follows from Lemma 3.1 that there exists a point xy ∈ ∂f−1(y) such that

whenever U is an open neighborhood of xy, there is a P ∈ Py satisfying P ⊂ f(U).

Let {Bn : n ∈ N} be a countable neighborhood base at point xy such that

Bn+1 ⊂ Bn for each n ∈ N. Suppose that {yn} is a sequence in Y , which

converges to y. Next, we take a sequence {xn} in X as follows.

Since Bn is an open neighborhood of xy, it follows from the Lemma 3.1

that there exists a Pn ∈ Py such that Pn ⊂ f(Bn) for each n ∈ N. Because every

P ∈ Py is a sequential neighborhood, it is easy to see that for each n ∈ N, f(Bn)

is a sequential neighborhood of y in Y . Therefore, for each n ∈ N, there is an

in ∈ N such that yi ∈ f(Bn) for every i ≥ in. Suppose that 1 < in < in+1 for

every n ∈ N. Hence, for each j ∈ N, we take

xj ∈
{
f−1(yj), if j < i1,

f−1(yj) ∩Bn, if in ≤ j < in+1.

We denote S = {xj : j ∈ N}. It is easy to see that S converges to xy in X and

f(S) = {yn}. Therefore, f is an 1-sequence-covering map.

Sufficiency. It easy to see that Y is snf -countable by Lemma 3.2. �

We don’t know whether, in Theorem 3.3, f is an 1-sequence-covering map

when X is only first-countable. However, we have the following Theorem 3.6,

which gives an affirmative answer to Question 1.1. Firstly, we give some technique

lemmas.

Lemma 3.4. [23] If X ∈ Ω, then every compact subset of X has a countable

external base.
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Lemma 3.5. Let f : X → Y be a sequence-covering and boundary-compact map.

If X ∈ Ω, then Y is snf -countable.

Proof. Let y be a non-isolated point for Y . Then ∂f−1(y) is non-empty and

compact for X. Therefore, ∂f−1(y) has a countable external base U in X by

Lemma 3.4. Let

V = {∪F : There is a finite subfamily F ⊂ U with ∂f−1(y) ⊂ ∪F}.

Obviously, V is countable. We now prove that f(V) is a countable sn-network at

point y.

(1) f(V) is a network at y.

Let y ∈ U . Obviously, ∂f−1(y) ⊂ f−1(U). For each x ∈ ∂f−1(y), there

exist an Ux ∈ U such that x ∈ Ux ⊂ f−1(U). Therefore, ∂f−1(y) ⊂ ∪{Ux : x ∈
∂f−1(y)}. Since ∂f−1(y) is compact, it follows that there exists a finite subfamily

F ⊂ {Ux : x ∈ ∂f−1(y)} such that ∂f−1(y) ⊂ ∪F ⊂ f−1(U). It is easy to see

that F ∈ V and y ∈ ∪f(F) ⊂ U .

(2) For any P1, P2 ∈ f(V), there exists a P3 ∈ f(V) such that P3 ⊂ P1∩P2.

It is obvious that there exist V1, V2 ∈ V such that f(V1) = P1, f(V2) = P2,

respectively. Since ∂f−1(y) ⊂ V1∩V2, it follows from the similar proof of (1) that

there exists a V3 ∈ V such that ∂f−1(y) ⊂ V3 ⊂ V1 ∩ V2. Let P3 = f(V3). Hence

P3 ⊂ f(V1 ∩ V2) ⊂ f(V1) ∩ f(V2) = P1 ∩ P2.

(3) For each P ∈ f(V), P is a sequential neighborhood of y.

Let {yn} be any sequence in Y which converges to y in Y . Since f is a

sequence-covering map, {yn} is the image of some sequence {xn} converging to

x ∈ ∂f−1(y) ⊂ X. It follows from P ∈ f(V) that there exists a V ∈ V such

that P = f(V ). Therefore, {xn} is eventually in V , and this implies that {yn} is

eventually in P .

Therefore, f(V) is a countable sn-network at point y. �

Theorem 3.6. Let f : X → Y be a sequence-covering and boundary-compact

map. If X ∈ Ω, then f is an 1-sequence-covering map.

Proof. From Lemma 3.5 it follows that Y is snf -countable. Therefore, f is an

1-sequence-covering map by Theorem 3.3. �

By Theorem 3.6, it easily follows the following Corollary 3.7, which gives

an affirmative answer to Question 1.1.

Corollary 3.7. Let f : X → Y be a sequence-covering and boundary-compact

map. Suppose also that at least one of the following conditions holds:

(1) X has a point-countable base;
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(2) X is a developable space.

Then f is an 1-sequence-covering map.

Lemma 3.8. Let f : X → Y be a sequence-covering map, where Y is snf -

countable and ∂f−1(y) has a countable external base for each point y ∈ Y . Then,

for each non-isolated point y ∈ Y , there exists a point xy ∈ ∂f−1(y) such that

whenever U is an open subset with xy ∈ U , there exists a P ∈ Py satisfying

P ⊂ f(U)

Proof. Suppose not, there exists a non-isolated point y ∈ Y such that for every

point x ∈ ∂f−1(y), there is an open neighborhood Ux of x such that P 6⊆ f(Ux) for

every P ∈ Py. Let B be a countable external base for ∂f−1(y). Therefore, for each

x ∈ ∂f−1(y), there exists a Bx ∈ B such that x ∈ Bx ⊂ Ux. For each x ∈ ∂f−1(y),

it follows that P 6⊆ f(Bx) whenever P ∈ Py. Assume that Py = {Pn : n ∈ N}
and Wy = {Fn =

⋂n
i=1 Pi : n ∈ N}. We denote {Bx ∈ B : x ∈ ∂f−1(y)} by

{Bm : m ∈ N}. For each n,m ∈ N, it follows that there exists xn,m ∈ Fn \f(Bm).

For n ≥ m, we denote yk = xn,m with k = m+n(n− 1)/2. Since Py is a network

at point y and Fn+1 ⊂ Fn for every n ∈ N, {yk} is a sequence converging to y in

Y . Because f is a sequence-covering map, {yk} is an image of some sequence {xk}
converging to x ∈ ∂f−1(y) in X. From x ∈ ∂f−1(y) ⊂ ∪{Bm : m ∈ N} it follows

that there exists am0 ∈ N such thatBm0
is an open neighborhood at x. Therefore,

{x}∪{xk : k ≥ k0} ⊂ Bm0 for some k0 ∈ N. Hence {y}∪{yk : k ≥ k0} ⊂ f(Bm0).

However, we can choose a k ≥ k0 and an n ≥ m0 such that yk = xn,m0
, which

implies that xn,m0
∈ f(Bm0

). This is a contradiction to xn,m0
∈ Fn \f(Bm0

). �

Theorem 3.9. Let f : X → Y be a sequence-covering and boundary-separable

map. If X has a point-countable base and Y is snf -countable, then f is an 1-

sequence-covering map.

Proof. Obviously, ∂f−1(y) has a countable external base for each point y ∈ Y .

Therefore, it is easy to see by Lemma 3.8 and the proof of Theorem 3.3. �

Remark We can’t omit the condition “Y is snf -countable” in Theorem 3.9.

Indeed, the sequence fan2 Sω is the image of metric spaces under the sequence-

covering s-maps by [15, Corollary 2.4.4]. However, Sω is not snf -countable, and

therefore, Sω is not the image of metric spaces under an 1-sequence-covering map.

In this section, we finally give an affirmative answer to Question 1.2.

2Sω is the space obtained from the topological sum of ω many copies of the convergent

sequence by identifying all the limit points to a point.
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Lemma 3.10. [5] Let f : X → Y be a map. If X is a Fréchet space3, then f is

a pseudo-open map4 if and only if Y is a Fréchet space and f is a sequentially

quotient map.

Theorem 3.11. Let f : X → Y be a boundary-compact map. If X ∈ Ω, then f

is a sequentially quotient map if and only if it is a pseudo-sequence-covering map.

Proof. First, suppose that f is sequentially quotient. If {yn} is a non-trivial se-

quence converging to y0 in Y , put S1 = {y0} ∪ {yn : n ∈ N}, X1 = f−1(S1)

and g = f |X1
. Thus g is a sequentially quotient, boundary compact map.

So g is a pseudo-open map by Lemma 3.10. Since X ∈ Ω , let {Un}n∈N
be a decreasing neighborhood base of compact subset ∂g−1(y0) in X1. Thus

{Un ∪ Int(g−1(y0))}n∈N is a decreasing neighborhood base of g−1(y0) in X1. Let

Vn = Un ∪ Int(g−1(y0)) for each n ∈ N. Then y0 ∈ Int(g(Vn)), thus there exists

an in ∈ N such that yi ∈ g(Vn) for each i ≥ in, so g−1(yi) ∩ Vn 6= ∅. We can

suppose that 1 < in < in+1. For each j ∈ N, we take

xj ∈
{
f−1(yj), if j < i1,

f−1(yj) ∩ Vn, if in ≤ j < in+1.

Let K = ∂g−1(y0) ∪ {xj : j ∈ N}. Clearly, K is a compact subset in X1 and

g(K) = S1. Thus f(K) = S1. Therefore, f is a pseudo-sequence-covering map.

Conversely, suppose that f is a pseudo-sequence-covering map. If {yn} is

a convergent sequence in Y , then there is a compact subset K in X such that

f(K) = {yn}. For each n ∈ N, take a point xn ∈ f−1(yn)∩K. Since K is compact

and metrizable, {xn} has a convergent subsequence {xnk
}. So f is sequentially

quotient. �

Corollary 3.12. Let f : X → Y be a boundary-compact map. Suppose also that

at least one of the following conditions holds:

(1) X has a point-countable base;

(2) X is a developable space.

Then f is a sequentially quotient map if and only if it is a pseudo-sequence-

covering map.

Question 3.1. Let f : X → Y be a sequence-covering and boundary-compact (or

compact) map. Is f an 1-sequence-covering map if one of the following conditions

is satisfied?

3X is said to be a Fréchet space [7] if x ∈ P ⊂ X, there is a sequence in P converging to x

in X.
4f is a pseudo-open map [3] if whenever f−1(y) ⊂ U with U open in X, then y ∈ Int(f(U)).
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(1) Every compact subset of X is metrizable;

(2) Every compact subset of X has countable character.

Remark If X satisfies the conditions (1) and (2) in Question 3.1, then f

is an 1-sequence-covering map by Theorem 3.6.

4. Sequence-covering maps on g-metrizable spaces

In this section, we mainly discuss sequence-covering maps on spaces with

a special weak base.

Lemma 4.1. Let f : X → Y be a sequence-covering and boundary-compact

map. For each non-isolated point y ∈ Y , there exist a point x ∈ ∂f−1(y) and a

decreasing weak neighborhood base {Bxi}i at x such that for each n ∈ N, there are

a P ∈ Py and i ∈ N with P ⊂ f(Bxi) if X and Y satisfy the following (1) and

(2):

(1) Y is snf -countable;

(2) Every compact subset of X has a countable external weak base in X.

Proof. Suppose not, there exists a non-isolated point y ∈ Y such that for every

point x ∈ ∂f−1(y) and every decreasing weak neighborhood base {Bxi}i of x,

there is an n ∈ N such that P 6⊆ f(Bxn) for every P ∈ Py. Since ∂f−1(y) is com-

pact, it follows that ∂f−1(y) has a countable external weak base B of X. Without

loss of generality, we can assume that B is closed under finite intersections. There-

fore, for each x ∈ ∂f−1(y), there exists a Bx ∈ B such that P 6⊆ f(Bx) for every

P ∈ Py. Next, using the argument from the proof of Lemma 3.8, this leads to a

contradiction. �

The following Lemma 4.2 is easy to check, and hence we omit it.

Lemma 4.2. Let X have a compact-countable weak base. Then every compact

subset of X has a countable external weak base in X.

Theorem 4.3. Let f : X → Y be a sequence-covering and boundary-compact

map, where X has a compact-countable weak base. Then Y is snf -countable if

and only if f is an 1-sequence-covering map.

Proof. Necessity. Let y be a non-isolated point in Y . Since X has a compact-

countable weak base, it follows from Lemmas 4.1 and 4.2 that there exists a point

xy ∈ ∂f−1(y) and a decreasing countable weak base {Bn : n ∈ N} at point xy
such that for each n ∈ N, there is a P ∈ Py satisfying P ⊂ f(Bn). Suppose that

{yn} is a sequence in Y , which converges to y. Then we can take a sequence {xn}



936 FUCAI LIN AND SHOU LIN

in X by the similar argument from the proof of Theorem 3.3. Therefore, f is an

1-sequence-covering map.

Sufficiency. By Lemma 3.2, Y is snf -countable. �

We don’t know whether the condition “compact-countable weak base” on

X can be replaced by “point-countable weak base” in Theorem 4.3,

Corollary 4.4. Let f : X → Y be a sequence-covering and boundary-compact

map, where X is g-metrizable. Then Y is snf -countable if and only if f is an

1-sequence-covering map.

Each closed sequence-covering map on metric spaces is 1-sequence-covering

[28]. Now, we improve the result in the following theorem.

Theorem 4.5. Let f : X → Y be a closed sequence-covering map, where X is

g-metrizable. Then f is an 1-sequence-covering map.

Proof. Since X is g-metrizable and f is a closed sequence-covering map, Y is

g-metrizable [21, Theroem 3.3]. Therefore, f is a boundary-compact map by [21,

Corollary 2.2]. Hence f is an 1-sequence-covering map by Corollary 4.4. �

Question 4.1. Let f : X → Y be a sequence-covering and boundary-compact

map. If X is g-metrizable, then is f an 1-sequence-covering map?

5. Closed sequence-covering maps

Say that a Tychonoff space X is strongly monotonically monolithic [27] if,

for any A ⊂ X we can assign an external base O(A) to the set A in such a way

that the following conditions are satisfied:

(a) |O(A)| ≤ max{|A|, ω};
(b) if A ⊂ B ⊂ X then O(A) ⊂ O(B);

(c) if α is an ordinal and we have a family {Aβ : β < α} of subsets of X

such that β < β′ < α implies Aβ ⊂ Aβ′ then O(∪β<αAβ) = ∪β<αO(Aβ).

From [27, Proposition 2.5] it follows that a Tychonoff space with a point-

countable base is strongly monotonically monolithic. Moreover, if X is a strongly

monotonically monolithic space, then it is easy to see that X ∈ Ω by [27, Theorem

2.7].

Lemma 5.1. Let f : X → Y be a closed sequence-covering map, where X is a

strongly monotonically monolithic space. Then Y contains no closed copy of Sω.

Proof. Suppose that Y contains a closed copy of Sω, and that {y} ∪ {yi(n) :

i, n ∈ N} is a closed copy of Sω in Y , here yi(n)→ y as i→∞. For every k ∈ N,
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put Lk =
⋃
n≤k{yi(n) : i ∈ N}. Hence Lk is a sequence converging to y. Let Mk

be a sequence of X converging to uk ∈ f−1(y) such that f(Mk) = Lk. We rewrite

Mk =
⋃
n≤k{xi(n, k) : i ∈ N} with each f(xi(n, k)) = yi(n).

Case 1: {uk : k ∈ N} is finite.

There are a k0 ∈ N and an infinite subset N1 ⊂ N such that Mk → uk0
for every k ∈ N1, then X contains a closed copy of Sω. Hence X is not first

countable. This is a contradiction.

Case 2: {uk : k ∈ N} has a non-trivial convergent sequence in X.

Without loss of generality, we suppose that uk → u as k → ∞. Since

X is first-countable, let {Um} be a decreasing open neighborhood base of X at

point u with Um+1 ⊂ Um. Then
⋂
m∈N Um = {u}. Fix n, pick xim(n, km) ∈

Um ∩ {xi(n, km)}i. We can suppose that im < im+1. Then {f(xim(n, km))}m is

a subsequence of {yi(n)}. Since f is closed, {xim(n, km)}m is not discrete in X.

Then there is a subsequence of {xim(n, km)}m converging to a point b ∈ X because

X is a first-countable space. It is easy to see that b = u by xim(n, km) ∈ Um for

every m ∈ N. Hence xim(n, km) → u as m → ∞. Then {u} ∪ {xim(n, km) :

n,m ∈ N} is a closed copy of Sω in X. Thus, X is not first countable. This is a

contradiction.

Case 3: {uk : k ∈ N} is discrete in X.

Let B = {uk : k ∈ N} ∪ {Mk : k ∈ N}. Since X is strongly mono-

tonically monolithic, B is metrizable. Hence there exists a discrete family

{Vk}k∈N consisting of open subsets of B with uk ∈ Vk for each k ∈ N. Pick

xik(1, k) ∈ Vk ∩ {xi(1, k)}i such that {f(xik(1, k))}k is a subsequence of {yi(n)}.
Since {xik(1, k)}k is discrete in B, {f(xik(1, k))}k is discrete in Y . This is a

contradiction.

In a word, Y contains no closed copy of Sω. �

Lemma 5.2. Let f : X → Y be a closed sequence-covering map, where X is a

strongly monotonically monolithic space. Then ∂f−1(y) is compact for each point

y ∈ Y .

Proof. From Lemma 5.1 it follows that Y contains no closed copy Sω. Since X

is a strongly monotonically monolithic space, every closed separable subset of X

is metrizable, and hence is normal. Therefore, ∂f−1(y) is countable compact for

each point y ∈ Y by [21, Theorem 2.6]. From [27, Theorem 2.7] it easily follows

that every countable compact subset of X is compact. �

Theorem 5.3. Let f : X → Y be a closed sequence-covering map, where X is a

strongly monotonically monolithic space. Then f is an 1-sequence-covering map.
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Proof. It is easy to see by Lemma 5.2 and Theorem 3.6. �

Corollary 5.4. Let f : X → Y be a closed sequence-covering map, where X is

a Tychonoff space with a point-countable base. Then f is an 1-sequence-covering

map.

In fact, we can replace “Tychonoff” by “regular” in Corollary 5.4, and

hence we have the following result.

Corollary 5.5. Let f : X → Y be a closed sequence-covering map, where X is a

regular space with a point-countable base. Then f is an 1-sequence-covering map.

Proof. Since X has a point-countable base and f is a closed sequence-covering

map, Y has a point-countable base by [21, Theorem 3.1]. Therefore, f is a

boundary-compact map by [22, Lemma 3.2]. Hence f is an 1-sequence-covering

map by Corollary 3.7. �

We don’t know whether, in Corollary 5.5, the condition “X has a point-

countable base” can be replaced by “X ∈ Ω”. So we have the following question.

Question 5.1. Let f : X → Y be a closed sequence-covering map. If X ∈ Ω

(and X is regular), then is f an 1-sequence-covering map?

Corollary 5.6. Let f : X → Y be a closed sequence-covering map, where X is a

strongly monotonically monolithic space. Then f is an almost-open map5.

Proof. f is an 1-sequence-covering map by Theorem 5.3. For each point y ∈ Y ,

there exists a point xy ∈ f−1(y) satisfying the Definition 2.2(4). Let U be an

open neighborhood of xy. Then f(U) is a sequential neighborhood of y. Indeed,

for each sequence {yn} ⊂ Y converging to y, there exists a sequence {xn} ⊂ X

such that {xn} converges to xy and xn ∈ f−1(yn) for each n ∈ N. Obviously,

{xn} is eventually in U , and therefore, {yn} is eventually in f(U). Hence f(U) is

a sequential neighborhood of y. Since X is first-countable, Y is a Fréchet space.

Then f(U) is a neighborhood of y. Otherwise, suppose y ∈ Y \ int(f(U)), and

therefore, y ∈ Y \ f(U). Since Y is Fréchet, there exists a sequence {yn} ⊂
Y \ f(U) converging to y. This is a contradiction with f(U) is a sequential

neighborhood of y. Therefore, f is an almost-open map. �

5f is an almost-open map [2] if there exists a point xy ∈ f−1(y) for each y ∈ Y such that

for each open neighborhood U of xy , f(U) is a neighborhood of y in Y .



SEQUENCE-COVERING MAPS ON GENERALIZED METRIC SPACES 939

Remark In [27], V.V. Tkachuk has proved that closed maps don’t pre-

serve strongly monotonically monolithic spaces. However, if perfect maps6 pre-

serve strongly monotonically monolithic spaces, then it is easy to see that

closed sequence-covering maps preserve strongly monotonically monolithity by

Lemma 5.2. So we have the following two questions.

Question 5.2. Do closed sequence-covering maps (or an almost open and closed

maps) preserve strongly monotonically monolithity?

Question 5.3. Do perfect maps preserve strongly monotonically monolithity?

In [27], V. V. Tkachuk has also proved that open and separable maps

preserve strongly monotonically monolithity. However, we have the following

result.

Theorem 5.7. Let f : X → Y be an open and closed map, where X is a strongly

monotonically monolithic space. Then Y is a strongly monotonically monolithic

space.

Proof. From [21, Theorem 3.4] it follows that f is a sequence-covering map.

Therefore, ∂f−1(y) is compact for each point y ∈ Y by Lemma 5.2. Then ∂f−1(y)

is metrizable by [27, Theorem 2.7], and hence it is separable, for each point y ∈ Y .

For each point y ∈ Y , if y is a non-isolated point, let Ay be a countable dense

set in the subspace ∂f−1(y); if y is an isolated point, then we choose a point

xy ∈ f−1(y) and let Ay = {xy}.
Let B ⊂ Y . Put AB = ∪{Ay : y ∈ B} and N (B) = {f(W ) : W ∈ O(AB)}.

It is easy to see that N (B) satisfies the conditions (a)-(c) of the definition of

strongly monotonically monolithity. Therefore, we only need to prove that N (B)

is an external base for B. For each point y ∈ B, let U be open subset in Y with

y ∈ U .

Case 1: y is a non-isolated point in Y .

Since f is an open map, ∅ 6= f−1(y) ⊂ f−1(B), and hence ∂f−1(y) ⊂
f−1(B). Take any point x ∈ ∂f−1(y). Then x ∈ AB . Therefore, there exists a

V ∈ O(AB) such that x ∈ V ⊂ f−1(U). So W = f(V ) ∈ N (B) and y ∈W ⊂ U .

Case 2: y is an isolated point in Y .

It is easy to see that {y} ∈ N (B), and therefore, y ∈ {y} ⊂ U .

In a word, N (B) is an external base for B. �

6A map f is called perfect if f is a closed and compact map
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Let B = {Bα : α ∈ H} be a family of subsets of a space X. B is point-

discrete (or weakly hereditarily closure-preserving) if {xα : α ∈ H} is closed dis-

crete in X, whenever xα ∈ Bα for each α ∈ H.

It is well-known that metrizability, g-metrizability, ℵ-spaces, and spaces

with a point-countable base are preserved by closed sequence-covering maps, see

[21, 28]. Next, we shall consider spaces with a σ-point-discrete k-network, and

shall prove that spaces with σ-point-discrete k-network are preserved by closed

sequence-covering maps. Firstly, we give some technique lemmas.

Lemma 5.8. Let X be an ℵ1-compact space7 with a σ-point-discrete network.

Then X has a countable network.

Proof. Let P =
⋃
n∈N Pn be a σ-point-discrete network for X, where each Pn

is a point-discrete family for each n ∈ N. For each n ∈ N, let

Bn = {x ∈ X : |(Pn)x| > ω}.

Claim 1: {P \Bn : P ∈ Pn} is countable.

Suppose not, there exist an uncountable subset {Pα : α < ω1} ⊂ Pn and

{xα : α < ω1} ⊂ X such that xα ∈ Pα \ Bn. Since Pn is a point-discrete family

and X is ℵ1-compact, {xα : α < ω1} is countable. Without loss of generality,

we can assume that there exists x ∈ X \ Bn such that each xα = x. Therefore,

x ∈ Bn, a contradiction.

Claim 2: For each n ∈ N, Bn is a countable and closed discrete subspace

for X.

For each Z ⊂ Bn with |Z| ≤ ω1. Let Z = {xα : α ∈
∧
}. By the definition

of Bn and Well-ordering Theorem, it is easy to obtain by transfinite induction

that {Pα : α ∈
∧
} ⊂ Pn such that xα ∈ Pα and Pα 6= Pβ for each α 6= β.

Therefore, Z is a countable and closed discrete subspace for X. Hence Bn is a

countable and closed discrete subspace.

For each n ∈ N, let P ′n = {P \Bn : P ∈ Pn} ∪ {{x} : x ∈ Bn}. Then P ′n is

a countable family.

Obviously,
⋃
n∈N P ′n is a countable network for X. �

The proof of the following lemma is an easy exercise.

Lemma 5.9. Let {Fα}α∈A be a point-discrete family for X and countably compact

subset K ⊂
⋃
α∈A Fα. Then there exists a finite family F ⊂ {Fα}α∈A such that

K ⊂ ∪F .

7A space X is called ℵ1-compact if each subset of X with a cardinality of ℵ1 has a cluster

point.
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Lemma 5.10. Let P be a family of subsets of a space X. Then P is a σ-point-

discrete wcs∗-network8 for X if and only if P is a σ-point-discrete k-network9 for

X.

Proof. Sufficiency. It is obvious. Hence we only need to prove the necessity.

Necessity. Let P =
⋃
n∈N Pn be a σ-point-discrete wcs∗-network, where

each Pn is a point-discrete family for each n ∈ N. Suppose that K is compact

and K ⊂ U with U open in X. For each n ∈ N, let

P ′n = {P ∈ Pn : P ⊂ U}, Fn = ∪P ′n.

Then there exists m ∈ N such that K ⊂
⋃
k≤m Fk. Suppose not, there is a

sequence {xn} ⊂ K with xn ∈ K −
⋃
i≤n Fi. By Lemma 5.8, it is easy to see

that K is metrizable. Therefore, K is sequentially compact. It follows that there

exists a convergent subsequence of {xn}. Without loss of generality, we assume

that xn → x. Since P is a wcs∗-network, there exist a P ∈ P, and a subsequence

{xni} of {xn} such that {xni : i ∈ N} ⊂ P ⊂ U . Therefore, there exists l ∈ N
such that P ∈ P ′l . Choose i > l, since P ⊂ Fl, xni

∈ Fl, a contradiction. Hence

there exists m ∈ N such that K ⊂
⋃
k≤m Fk. By Lemma 5.9, there is a finite

family P ′′ ⊂
⋃
i≤m P ′i such that K ⊂ ∪P ′′ ⊂ U . Therefore, P is a k-network. �

Theorem 5.11. Closed sequence-covering maps preserve spaces with a σ-point-

discrete k-network.

Proof. It is easy to see that closed sequence-covering maps preserve spaces with

a σ-point-discrete wcs∗-network. Hence closed sequence-covering maps preserve

spaces with a σ-point-discrete k-network by Lemma 5.10. �

Question 5.4. Do closed maps preserve spaces with a σ-point-discrete k-network?
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