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of paratopological groups with interesting properties:
(1) There exists a metrizable, zero-dimensional and pseudobounded topological group;
(2) There exists a Hausdor� ω-pseudobounded paratopological group G such that G contains a dense sub-
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1 Introduction
A paratopological group is a group endowed with a topology for which multiplication in the group is jointly
continuous. If, additionally, the inversion in a paratopological group is continuous, then it is called a topo-
logical group.

Let G be a paratopological group and A ⊆ G. According to [4], A is a pseudobounded subset of G, if for
every neighbourhood V of the identity e in G, there exists a natural number n such that A ⊆ Vn. If G is
pseudobounded in itself, then we say that G is pseudobounded.

Following [8], a subset A of a paratopological group G is a ω-pseudobounded subset of G, if for every
neighbourhood V of the identity e in G, we have that A ⊆

⋃
n∈N V

n. If G is ω-pseudobounded in itself, then
we say that G is ω-pseudobounded.

Clearly, every pseudobounded paratopological group is ω-pseudobounded. However, the additive
group (R, +) endowed with the usual topology is a ω-pseudobounded topological group which is not pseu-
dobounded (see [8, Example 3]).

We show that every feebly compact (2-pseudocompact) pseudobounded (ω-pseudobounded) premeager
paratopological group is a topological group (see Corollaries 2.3 and 2.10). Also, we prove that if G is a totally
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ω-pseudobounded paratopological group such that G is a Lusin space, then is G a topological group (see
Proposition 2.8).

In [8, Proposition 7], the authors showed that each connected topological group is ω-pseudobounded.
However, the converse is not true: there exists a metrizable, zero-dimensional and pseudobounded topolog-
ical group (see Example 2.22). This fact answers Question 9 in [8].

Moreover, we present some examples of pseudoboundedness or ω-pseudoboundedness in the class of
paratopological groups.

2 Pseudobounded paratopological groups
A paratopological group G is called premeager if for each nowhere dense subset A of G, we have An ≠ G for
each n ∈ N (see [8]).

A paratopological group G is saturated if for each neighbourhood U of the identity in G, we have
Int(U−1) ≠ ∅.

Theorem 2.1. Let G be a pseudobounded and premeager paratopological group. Then G is saturated.

Proof. Take a neighbourhood U of the identity e in G. By the continuity of the multiplication in G, there
exists a neighbourhood V of e such that V2 ⊆ U. We have that V−1 ⊆ U−1. Suppose that Int(U−1) = ∅. Since
V−1 ⊆ U−1, Int(V−1) = ∅, i.e., V−1 is a nowhere dense subset of G. Since G is pseudobounded, there exists a
natural number n such that Vn = G, so V−1n = G, which contradicts that G is premeager. We conclude that G
is saturated.

A space X is feebly compact if every locally �nite family of open sets in X is �nite. In the class of Tychono�
spaces, feeble compactness is equivalent to pseudocompactness.

Proposition 2.2. ([12]) Every saturated feebly compact paratopological group is a topological group.

Corollary 2.3. Every feebly compact, pseudobounded and premeager paratopological group is a topological
group

Problem 2.4. If G is feebly compact pseudobounded (Hausdor�) paratopological group, is G a topological
group?

A Lusin space is an uncountable space such that every nowhere dense subset of the space is countable. It
follows from the de�nition that every Lusin paratopological group is premeager.

Proposition 2.5. If G is a ω-pseudobounded and Lusin paratopological group, then G is saturated.

Proof. Let U a neighbourhood of the identity e in G. Suppose that U−1 has empty interior. Take a neighbour-
hood V of e such that V2 ⊆ U. We have that V−1 ⊆ U−1, so V−1 is a nowhere dense subset of G. Since G is
a Lusin space, V−1 is countable. It follows that Vn is countable for every n ∈ ω, whence, G =

⋃
n∈N V

n is
countable. This contradiction shows that G is saturated.

Corollary 2.6. Let G be a feebly compact, ω-pseudobounded, and Lusin paratopological group, then G is a
topological group.

Let G be a paratopological group with topology τ. We de�ne the conjugate topology τ−1 on G by τ−1 = {U−1 :
U ∈ τ}. The upper bound τ* = τ ∨ τ−1 is a topological group topology on G and G* = (G, τ*) is called the
topological group associated to G. If U is local base at the identity in G, then U* = {U ∩ U−1 : U ∈ U*} is local
base at the identity in G*.
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Suppose that P is a property. A paratopological group G is totally P if the associated topological group
G* has the property P.

Lemma 2.7. ([2]) Suppose that G is a paratopological group and not a topological group. Then there exists an
open neighbourhood of the identity in G such that is U ∩ U−1 is nowhere dense in G.

The following result gives a partial answer to [8, Question 8]: If G a is totally ω-pseudobounded premeager
paratopological group, is G a topological group?

Proposition 2.8. If G is a totally ω-pseudobounded paratopological group such that G is a Lusin space, then
is G a topological group.

Proof. Suppose that G is not a topological group. By Lemma 2.7, there exists an open neighbourhood of the
identity in G such that is U ∩U−1 is nowhere dense in G. Arguing as in Proposition 2.5, we conclude that G* is
countable, so G is countable. This contradicts that G is a Lusin space. Therefore G is a topological group.

We say that a paratopological group G is 2-pseudocompact if
⋂
n∈ω U−1n ≠ ∅, for each non-increasing sequence

{Un : n ∈ ω} of non-empty open subsets of G.

Proposition 2.9. Every ω-pseudobounded 2-pseudocompact paratopological group is pseudobounded.

Proof. Let G be a ω-pseudobounded 2-pseudocompact paratopological group. Take a neighbourhood U of
the identity e in G. Since G is ω-pseudobounded, G =

⋃
n∈N U

n. Suppose that G \ U−n is a non-empty open
set for every n ∈ N. The family {G \ U−n : n ∈ N} is a non-increasing sequence of non-empty open subsets of
G. We have that ⋂

n∈N

(G \ U−n)−1 ⊆
⋂
n∈N

(G \ U−n)−1 =
⋂
n∈N

(G \ Un) = ∅.

This contradicts the 2-pseudocompactness of G. Therefore, there exists n ∈ N such that G = U−n ⊆ U−n−1, so
G = Un+1.

Corollary 2.10. Every 2-pseudocompact ω-pseudobounded premeager paratopological group is a topological
group.

Proof. Let G be a 2-pseudocompact ω-pseudobounded premeager paratopological group. By Proposition 2.9
G is pseudobounded. According to [12], every 2-pseudocompact paratopological group is feebly compact. We
�nish the proof applying Corollary 2.3.

Problem 2.11. Let G be a 2-pseudocompact pseudobounded paratopological group. Is G a topological group?

Given a pseudobounded subset A of a paratopological group G, in general, A and A−1 are not pseudobounded
subsets of G. We have the next result in this direction.

Proposition 2.12. If a paratopological group G contains a pseudobounded (ω-pseudobounded) dense sub-
group, then G is pseudobounded (ω-pseudobounded)

Proof. Let H be a pseudobounded dense subgroup of G. Take an open neighbourhood U of the identity e in
G. Since H is a pseudobounded subset of G, there exists n ∈ N such that H ⊆ Un, equivalently, H ⊆ U−n.
Hence, G = H ⊆ HU−1 ⊆ U−n−1, whence, G = Un+1. Using a similar argument, we can prove that if H is an
ω-pseudobounded dense subgroup of a paratopological group G, then G is ω-pseudobounded.

Lemma 2.13. ([14]) Suppose that H is dense subgroup of a paratopological group G. Let n ∈ N and suppose
that W1, . . . ,W2n are open neighbourhoods of the identity e in G. Then, for every neighbourhood O of e and
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every choice wi ∈ Wi for i = 1, . . . , 2n satisfying w1w−12 · · ·w2n−1w−12n ∈ H, there exist elements ui ∈ H ∩ wiO,
for i = 1, . . . , 2n such that

u1u−12 · · · u2n−1u−12n = w1w−12 · · ·w2n−1w−12n .

Here, we present the converse of Proposition 2.12 for topological groups.

Theorem 2.14. If H is dense subgroup of a pseudobounded (ω-pseudobounded) topological group G, then H
is pseudobounded (ω-pseudobounded).

Proof. Suppose that G is ω-pseudobounded. Take a neighbourhood U of the identity e in H, there exists V
neighbourhood of e in G such that U = V ∩ H. We can �nd a symmetric neighbourhood W of e in G such
that W2 ⊆ V. Since G is ω-pseudobounded, G =

⋃
n∈NW

n. Let us show that H =
⋃
n∈N U

n. Take h ∈ H,
there exists n ∈ N such that h ∈ W2n. Since W is a symmetric neighbourhood W of e in G, we can put
h = w1w−12 . . . w2n−1w−12n,wherewi ∈ W, for i = 1, . . . , 2n. ByLemma2.13, there exist elements ui ∈ H∩wiW ⊆
H ∩W2 ⊆ H ∩ V = U, for i = 1, . . . , 2n such that

h = w1w−12 · · ·w2n−1w−12n = u1u−12 · · · u2n−1u−12n .

We have that u−1i ∈ H∩W−1w−1i ⊆ H∩W2 ⊆ H∩V = U, for i = 1, . . . , 2n. Therefore, h = u1u−12 · · · u2n−1u−12n ∈
U2n. It follows that H =

⋃
n∈N U

n. The proof of the case pseudobounded is similar.

We need the following lemma to construct examples of Hausdor� paratopological groups.

Lemma 2.15. ([10, Proposition 1.1]) Let G be a group, and letUbe a family of subsets of G containing the identity
e in G. Suppose that the family U satis�es the following conditions (called the Pontryagin’s conditions):
i) for every U, V ∈ U, there is W ∈ U such that W ∈ U ∩ V;
ii) for every U ∈ U and each x ∈ U, there exists V ∈ U such that Vx ⊆ U;
iii) for each U ∈ U and x ∈ G, there exists V ∈ U such that xVx−1 ⊆ U;
iv) for every U ∈ U, there is an element V ∈ U such that V2 ⊆ U.

Then there exists a topology τ on G such that (G, τ) is a paratopological group and the family U is a local base
at the identity e in G. In addition, if the family U satis�es

⋂
U∈U UU

−1 = {e}, then the paratopological group
(G, τ) is Hausdor�.

The following example shows that Theorem2.14 is false in the class ofHausdor�ω-pseudoboundedparatopo-
logical groups.

Example 2.16. There exists a Hausdor� ω-pseudobounded paratopological group G such that G contains a
dense subgroup which is not ω-pseudobounded.

Proof. Consider de additive group (R, +). Fix a natural number k and put Un(k) = k(N∪{0})+(− 1
n ,

1
n ) for each

n ∈ N. Let us show that the family U = {Un(k) : k, n ∈ N} satis�es conditions i)–iv) in Lemma 2.15. To prove
i), take k1, k2, n1, n2 ∈ N. Put k = k1k2 and n = n1n2. Clearly, Un(k) ⊆ Un1 (k1) ∩ Un2 (k2). Let us check ii).
Choose x ∈ Un(k), for some n, k ∈ N. We can �nd s ∈ N ∪ {0} such that x ∈ ks + (− 1

n ,
1
n ), so x − ks ∈ (−

1
n ,

1
n ).

There exists m ∈ N satisfying x − ks + (− 1
m ,

1
m ) ⊆ (− 1

n ,
1
n ), whence, x + (− 1

m ,
1
m ) ⊆ ks + (− 1

n ,
1
n ). Therefore,

x + Um(k) ⊆ Un(k). Item iii) is trivial. To verify iv), take Un(k). We can �nd m ∈ N such that 2
m < 1

n . We have
that Um(k) +Um(k) = k(N∪{0}) + (− 1

m ,
1
m ) + k(N∪{0}) + (−

1
m ,

1
m ) ⊆ k(N∪{0}) + (−

2
m ,

2
m ) ⊆ Un(k). By Lemma

2.15, there exists a topology σ onR such that G = (R, σ) is a paratopological group and the familyU is a local
base at 0 in G.

It is easy to check that Un(k) − Un(k) = kZ + (− 2
n ,

2
n ) for each k, n ∈ N. Fix k ∈ N, we have that⋂

n∈N(Un(k) − Un(k)) = kZ. It follows that
⋂
k,n∈N(Un(k) − Un(k)) = {0}, so G is a Hausdor� space. Clearly, G

is ω-pseudobounded.
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Let α be a positive irrational number. Denote by H the subgroup of G generated by α. Let us show that H
is dense in G. Take a non-empty open set O in G. We can �nd a ∈ O and n, k ∈ N such that a + Un(K) ⊆ O.
There exists r ∈ N satisfying rα > a. Put p = rα. Let T be the circle group endowed with the usual topology.
Consider the continuous homomorphism f : G → T such that f (x) = e 2πix

k , for each x ∈ G. Put z = f (a). Clearly,
f (a + Un(k)) = zf (− 1

n ,
1
n ) is an open set in T. Since the set {f (sp) : s ∈ N} is dense in T, there exists m ∈ N

such that f (mp) ∈ (a + Uk(n)). It follows that mp ∈ a + Uk(n) + kZ = a + kZ + (− 1
n ,

1
n ). Since p > a, we have

that mp > a. Hence,

mrα = mp ∈ a + k(N ∪ {0}) + (−1n ,
1
n ) = a + Un(k) ⊆ O.

We conclude thatH is dense in G. Take n ∈ N such that 1
n < α, then the elements of Un(1)∩H are non-negative

real numbers, so
⋃
η∈N η(Un(1) ∩ H) ≠ H. It follows that H is not ω-pseudobounded.

We have the following two questions.

Problem 2.17. Let G be a regular ω-pseudobounded paratopological and H is a dense subgroup of G. Is H
ω-pseudobounded?

Problem 2.18. Suppose that G is a pseudobounded paratopological and H is a dense subgroup of G. Is H
pseudobounded?

The multiplication mapping of a paratopological group G is said to locally closed at e if there exists an open
neighborhood U of e in G satisfying the following condition:

(a) For each open neighborhood V of e in G and n ∈ N, if Vn ⊂ U then Vn is closed in G.
Note.Obviously, if themultiplicationmapof aparatopological group is closed then it is locally closedat e.

Example 2.19. There exists a topological group G which multiplication mapping is locally closed at e and not
closed.

Proof. Let G be the setR \ {0} of all non-zero real numbers with the usual multiplication and usual topology.
Then G is a topological group. Obviously, the product map is locally closed at 1. Obviously, both the sets Z
and { 1n : n ∈ N} are closed in G. Then the product of Z and { 1n : n ∈ N} is Q which is proper dense subset
of G, and hence the product of Z and { 1n : n ∈ N} is not closed. Therefore, the product map is not a closed
map.

The following gives a partial answer to Problem 2.17 and Problem 2.18.

Theorem 2.20. Suppose that G is a pseudobounded (resp. ω-pseudobounded) regular paratopological group
and H is a dense subgroup of G. If the multiplication mapping H × H into H is locally closed at e, then H is
pseudobounded (resp. ω-pseudobounded).

Proof. We shall show the case of ω-pseudoboundedness. The proof of analogous assertion for pseudobound-
edness is quite similar.

Let U be an open neighborhood of e in H. Then there exists an open neighborhood V of e in G such that
V ∩H ⊂ VG ∩H ⊂ U. Since G is ω-pseudobounded, we have G =

⋃
n∈N V

n, and then
⋃
n∈N(V ∩ H)

n = G since
H is dense in G.

Next we shall show that
⋃
n∈N(V ∩ H

H)n = H. Indeed, pick any h ∈ H. Then there exists n ∈ N such that
h ∈ Vn. Then h has the form h = g1 · · · gn, where gi ∈ V for each i = 1, · · · , n.

Claim: h ∈ (V ∩ HH)n .
LetW be an any open neighborhood of h in H, and therefore there exists an open neighborhood O of e in

G such thatW = O ∩ H. Then, for each i = 1, · · · , n, there exist open neighborhoodsWi of gi in G such that∏i=n
i=1Wi ⊂ O. For each i = 1, · · · , n, we haveWi∩V∩H ≠ ∅ since gi ∈ V ∩ H. Therefore, (

∏i=n
i=1Wi)∩(V∩H)n ≠
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∅, and thus O ∩ (V ∩ H)n ≠ ∅. Therefore,

W ∩ (V ∩ H)n = (O ∩ H) ∩ (V ∩ H)n = O ∩ (V ∩ H)n ≠ ∅.

Hence h ∈ (V ∩ H)n
H
. Since the product map H × H into H is locally closed at e, we have

(V ∩ H)n
H
⊂ (V ∩ HH)n ,

and then h ∈ (V ∩ HH)n.
By the arbitrary of h, it follows from Claim that we have

H =
⋃
n∈N

(V ∩ HH)n ⊂
⋃
n∈N

(V ∩ H)n ⊂
⋃
n∈N

Un ,

that is, H is ω-pseudobounded.

In [8], the authors posed the following questions:
A) Is every �rst-countable and pseudobounded paratopological group a topological group? (see [8, Ques-

tion 2])
B) Is every �rst-countable and pseudobounded paratopological group metrizable?
The following example answers questions A) and B) in the negative.

Example 2.21. There exists a normal �rst-countable and pseudobounded paratopological group which is non-
metrizable.

Proof. Consider S1 = {x ∈ C : |x| = 1} and put Un = {eiθ : 0 ≤ 1
n} for each n ∈ N. Let K be the circle

group endowed with the Sorgenfrey topology, i.e., the topology on S1 = {x ∈ C : |x| = 1} such that the
family {Un : n ∈ N} is a local base at 1 in K. It is easy to see that K is a normal space. Clearly, K is a �rst-
countable pseudobounded paratopological groupwhich is not a topological group. Let us show thatK is non-
metrizable. Suppose the contrary, i.e.,K is metrizable. Since G is separable, G is second countable. According
to [13, Corollary 3.3], the associated topological groupK* is second countable too. On the other hand,K* is a
discrete uncountable topological group. This contradiction shows thatK is non-metrizable.

Every connected topological group is ω-pseudobounded (see [8, Proposition 7]). The following example
shows that the converse is false. This answers Question 9 in [8]. Also, Example 2.24 shows that [8, Proposi-
tion 7] can not be extended to Hausdor� paratopological groups, answering [8, Question 10] for the Hausdor�
case.

Example 2.22. There exists a metrizable, zero-dimensional and pseudobounded topological group.

Proof. Let T be the circle group endowed with the usual topology. Let G be the torsion subgroup of T, i.e., G
consists of the elements of T of �nite order. Clearly, G is metrizable and zero-dimensional. We know that G is
a dense subgroup of the topological group T. By Theorem 2.14, we conclude that G is pseudobounded.

Consider a paratopological group (G, τ). Let τ−1 the conjugate topology on G. Then τ* = τ ∧ τ−1 is the �nest
group topology on G weaker than τ and G* = (G, τ*) is called the group re�ection of G (see [14]).

Proposition 2.23. ([10]) If G is an Abelian paratopological group andU is local base at the identity in G, then
U* = {UU−1 : U ∈ U} is local base at the identity in G*.

Example 2.24. There exists a Hausdor� connected paratopological group which is not ω-pseudobounded.

Proof. Consider de additive group (R, +). Fix a natural number k and put Un(k) = {0} ∪ (kN + (− 1
n ,

1
n )) for

each n ∈ N. Arguing as in Example 2.16, we can conclude that the family U = {Un(k) : k, n ∈ N} satis�es
conditions i)–iv) in Lemma 2.15, so there exists a topology τ on R such that H = (R, τ) is a paratopological
group and the familyU is a local base at 0 in H. According to Proposition 2.23,U* = {Un(k)−Un(k) : k, n ∈ N}
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is local base at 0 in H*. It is easy to check that Un(k)−Un(k) = kZ+(− 2
n ,

2
n ) for each k, n ∈ N. We conclude that

the topology τ* is weaker than the usual topology inR, so the spaceH* is connected. PutWn(k) = kZ+(− 1
n ,

1
n ),

then the family {Wn(k) : k, n ∈ N} is local base at 0 in H*. Fix k ∈ N, we have that
⋂
n∈N(Un(k) −Un(k)) = kZ.

It follows that
⋂
k,n∈N(Un(k) − Un(k)) = {0}, so H* and H are Hausdor� spaces.

By the de�nition of the topology τ, we have thatWn(k) ⊆ Un(k)
τ
for every k, n ∈ N. Let us show that H is

connected. Suppose the contrary, then there exists non-empty open sets A and B inH such that A∪B = H and
A∩B = ∅. We claim that A and B are open sets inH*. Take a ∈ A, there exists k, n ∈ N such that a+Un(k) ⊆ A.
Since A is closed in H, we have that a + Wn(k) ⊆ a + Un(k)

τ
⊆ A. This implies that A is open in H*. Using a

similar argument we conclude that B is open in H*. In addition, A ∪ B = H* and A ∩ B = ∅. This contradicts
the connectedness of H*, so H is connected. Clearly, H is not ω-pseudobounded.

Proposition 2.25. Let f : G → H be a continuous homomorphism from the paratopological group G onto the
paratopological group H. If G is pseudobounded (ω-pseudobounded), then H is ω-pseudobounded.

Proof. Suppose that G is ω-pseudobounded. Take V a open neighbourhood of the identity in H. Put U =
f −1(V). Since f is a continuous homomorphism, U is a neighbourhood of the identity in G. By hypothesis,
G =

⋃
n∈N U

n.We conclude, H =
⋃
n∈N f (U

n) =
⋃
n∈N f (U)

n =
⋃
n∈N V

n, so H is ω-pseudobounded. The proof
of the pseudobounded case is similar.

Denote by FP(X) and AP(X) the free paratopological group and the free Abelian paratopological group on a
space X, respectively. In what follows, we use PG(X) to denote the paratopological group F(X) or A(X). We
use the argument in the proof of [3, Proposition 7.1.12] to prove the following result.

Proposition 2.26. For every space X, the following conditions are equivalent:
a) PG(X) is pseudobounded;
b) PG(X) is ω-pseudobounded;
c) X = ∅.

Proof. Let X be a non-empty space. De�ne a function f to the discrete groupZ by f (x) = 1 for each x ∈ X. Then
f is continuous, so it admits an extension to a continuous homomorphism f̂ : PG(X) → Z. Clearly, f̂ (PG(X)) =
Z. By Proposition 2.25, Z is ω-pseudobounded. This contradiction shows that X = ∅.

Problem 2.27. Is every pseudobounded paratopological (topological) group a precompact or ω-narrow?

For aHausdor� paratopological group Gwith the identity e theHausdor� number [15] of G, denoted byHs(G),
is the minimum cardinal number κ such that for every neighborhood U of e in G, there exists a family γ of
neighborhoods of e such that

⋂
V∈γ VV

−1 ⊆ U and |γ| ≤ κ.

Theorem 2.28. Let G be a Hausdor� paratopological group of countable pseudocharacter. If Hs(G) ≤ ω and
G is saturated, then it is submetrizable.

Proof. Suppose that {Un : n ∈ N} is a sequence of open neighborhoods of e in G such that
⋂
n∈N Un = {e}.

LetBe be a local base at e in G, and let

σ = {U ⊂ G : There exists a V ∈ Be such that xVV−1 ⊂ U for each x ∈ U}.

Since G is saturated, it follows from [5, Theorem 3.2] that (G, σ) is a topological group. Obvious, (G, σ) is T1
since (G, τ) is Hausdor�, andhence (G, σ) is regular. For each n ∈ N, sinceHs(G) ≤ ω, there exists a countable
subfamilyBn ⊂ Be such that

⋂
V∈Bn

VV−1 ⊂ Un. LetB =
⋃
n∈N Bn ⊂ Be. Then we have⋂

V∈B

VV−1 ⊂
⋂
n∈N

Un = {e}.

Therefore, topological group (G, σ) is of countable pseudocharacter, and thus it is submetrizable by [3, The-
orem 3.3.16]. Therefore, (G, τ) is submetrizable.

Unauthenticated | 189.193.32.223
Download Date | 7/3/14 6:22 PM



18 | Fucai Lin, Shou Lin, and Iván Sánchez

By Theorem 2.1, Proposition 2.5 and Theorem 2.28, we have the following proposition.

Proposition 2.29. Let G be a Hausdor� paratopological group of countable pseudocharacter. If G satis�es (1)
or (2), then it is submetrizable.

(1) The group G is a pseudobounded premeager paratopological group with Hs(G) ≤ ω;
(2) The group G is an ω-pseudobounded Lusin paratopological group with Hs(G) ≤ ω.

It is easy to see that a Hausdor� �rst-countable paratopological group has a countable Hausdor� number.
Hence we have the following corollary.

Corollary 2.30. Let G be a Hausdor� pseudobounded and premeager paratopological group. If G is �rst-
countable, then it is submetrizable.

However, the following problem is still open.

Problem 2.31. Let G be aHausdor� pseudobounded and premeager paratopological group. If G is of countable
pseudocharacter, is it submetrizable?

In [9], the authors show that there exists a regular developable paratopological groupwhich is notmetrizable.
However, that example is not ω-pseudobounded. Therefore, we have the following problem.

Problem 2.32. Is every regular developable and pseudobounded paratopological group metrizable?

Problem 2.33. Is every regular pseudobounded paratopological group with a uniform base metrizable?
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