Spaces with σ -hereditarily Closure-preserving Pseudobases *)

Lin Shou (林 寿)

(Department of Mathematics, Ningde Teachers' College, Fujian, 352100)

Abstract In this paper the relationship between pseudobases and k-networks is discussed. It is shown that a regular and T_1 space with σ -hereditarily closure-preserving pseudobases is an \Re -space, and that a regular and T_1 space is a space with σ -hereditarily closure-preserving closed pseudobases if and only if it is either an \Re_0 -space or a σ -closed discrete space, of which all compact subsets are finite.

Key Words Pseudobase; k-network; \aleph_0 -space; \aleph -space; Hereditarily Closure-preserving Collection

All spaces considered in this paper are regular and T_1 .

Let X be a topological space, and let \mathscr{P} be a collection of subsets of X. \mathscr{P} is closure-preserving (abbr. CP) if $\overline{\bigcup \mathscr{P}'} = \bigcup \{\overline{P}: P \in \mathscr{P}'\}$ for each subcollection \mathscr{P}' of \mathscr{P} . \mathscr{P} is locally finite (abbr. LF) if $\{\overline{P}: P \in \mathscr{P}\}$ is point-finite and CP. \mathscr{P} is hereditarily closure-preserving (abbr. HCP) if $\{H(P): P \in \mathscr{P}\}$ is CP for each $H(P) \subset P \in \mathscr{P}$. \mathscr{P} is weakly hereditarily closure-preserving (abbr. WHCP) if $\{\{x(P)\}: P \in \mathscr{P}\}$ is CP for each $x(P) \in P \in \mathscr{P}$. Obviously, LF collections are HCP, and HCP collections are CP and WHCP. \mathscr{P} is a pseudobase (k-network) if whenever K is a compact subset of an open set U of X, then $K \subset P \subset U$ ($K \subset \bigcup \mathscr{P}' \subset U$) for some $P \in \mathscr{P}$ (finite subfamily $\mathscr{P}' \subset \mathscr{P}$). Spaces with countable pseudobases are \Re_0 -spaces. Spaces with σ -LF k-networks are \Re_0 -spaces.

Let \mathscr{D} be a k-network for X. Put

$$\mathscr{D}' = \{ \bigcup \mathscr{F} : \mathscr{F} \text{ is a finite subfamily of } \mathscr{D} \}.$$

Then \mathscr{D}' is a pseudobase for X. But, if \mathscr{D} is HCP, then \mathscr{D}' can not be HCP. It is natural to raise the following question: What is the relationship between spaces with σ -HCP pasudobases and \Re -spaces? In this paper it is shown that spaces with σ -HCP pseudobases are \Re -spaces (Theorem 1), and that a space with σ -HCP closed pseudobases if and only if it is either an \Re -space or a σ -closed discrete space, of which all compact subsets are finite (Theorem 2).

§ 1. Spaces with σ-HCP Pseudobases

A space X is \Re_1 -compact if every closed discrete subspace of X is countable.

Received Dec. 9, 1987.

^{*)} Project Supported Partly by the Science Fund of Fujian Province.

Lemma 1 An \S_1 -compact space with σ -WHCP k-networks is an \S_0 -space.

Proof Suppose X is an \S_1 -compact space with σ -WHCP k-network \mathscr{D} . Let $\mathscr{D} = \bigcup \{\mathscr{D}_n : n \in \mathbb{N}\}$, where $\mathscr{D}_n \subset \mathscr{D}_{n+1}$ and \mathscr{D}_n is WHCP. For each $n \in \mathbb{N}$, put

$$A_* = \{x \in X : \mathscr{D}_* \text{ is not point countable at } x\}.$$

Then $\{P-A_n\colon P\in\mathscr{P}_n\}$ is countable, and A_n is a countable closed discrete subspace of X. In fact, if $\{P-A_n\colon P\in P_n\}$ were not countable, then there would exist $\{P_a\colon a<\omega_1\}$ such that the (P_a-A_n) 's are distinct and non-empty. For each $a<\omega_1$, take a point $x_a\in P_a-A_n$. Since \mathscr{P}_n is WHCP and X is \S_1 -compact, $\{x_a\colon a<\omega_1\}$ is countable. So there exist an uncountable subset A of ω_1 and $x\notin A_n$ such that $x_a=x$ for each $a\in A$, a contradiction. Hence $\{P-A_n\colon P\in\mathscr{P}_n\}$ is countable. If $Z=\{z_k\in A_n\colon k\in H\}$ with $|H|\leqslant \S_1$, since \mathscr{P}_n is not point countable at point z_k , by well-ordering principle and transfinite induction we can obtain a subcollection $\{P_k\colon k\in H\}$ of \mathscr{P}_n such that $z_k\in P_k$ and the P_k 's are distinct. Since \mathscr{P}_n is WHCP, Z is a closed discrete subspace of X. By the \S_1 -compactness of X, A_n is a countable closed discrete subspace of X. Therefore

$$\mathscr{D}_{\bullet}' = \{P - A_{\bullet}: P \in \mathscr{D}_{\bullet}\} \cup \{\{x\}: x \in A_{\bullet}\}$$

is a countable collection. If K is a compact subset of an open set U of X, then there exist $n \in N$ and a finite subcollection \mathscr{P}_n^* of \mathscr{P}_n such that $K \subset \bigcup P_n^* \subset U$. Since every closed discrete subspace of a compact space is finite, $K \cap A_n$ is finite, so

$$\mathscr{D}_{\bullet}^{**} = \{P - A_{\bullet}: P \in \mathscr{D}_{\bullet}^{*}\} \cup \{\{x\}: x \in K \cap A_{\bullet}\}$$

is a finite subcollection of \mathscr{P}'_n , and $K \subset \bigcup \mathscr{P}'_n * \subset U$. Hence $\bigcup \{\mathscr{P}'_n : n \in N\}$ is a countable k-network for X. This completes the proof of the Lemma.

Lemma 2 A space with σ -WHCP pseudobases is either an \aleph_0 -space or the space whose all compact subsets are finite.

Proof Suppose the space X has σ -WHCP pseudobases. Let $\mathscr{P} = \bigcup \{\mathscr{P}_n : n \in N\}$ be a σ -WHCP pseudobase for X, where each \mathscr{P}_n is WHCP. If X has an infinite compact subset, we shall show that X is an \S_0 -space. Let K be an infinite compact subset of X. Then $\{P \cap K : P \in \mathscr{P}\}$ is a σ -WHCP pseudobase for K because \mathscr{P} is a σ -WHCP pseudobase for X. So K is a compact \S_0 -space by Lemma 1. Thus K is a compact metrizable subset of X (cf. [1]). Therefore there exists mutually distinct $x_n \in K$ such that the sequence $\{x_n\}$ converges to $x \in K - \{x_n : n \in N\}$. If X is not \S_1 -compact, there exists a closed discrete subspace $A \subset X$ with $|A| = \S_1$. Then $|A - K| = \S_1$ because $K \cap A$ is finite. Let $A - K = \{z_n : a < \omega_1\}$. For each $a < \omega_1$, let

$$V_a = X - \{z_b: a \neq b < \omega_1\}.$$

Then V_a is an open subset of X and $K \cup \{z_a\} \subset V_a$. So there exist $n(a) \in N$ and $P_a \in \mathscr{P}_{n(a)}$ such that $K \cup \{z_a\} \subset P_a \subset V_a$. Thus there exist an uncountable subset Λ of ω_1 and $m \in N$ such that n(a) = m when $a \in \Lambda$, i. e., $P_a \in \mathscr{P}_m$. For distinct a, $b \in \Lambda$, the P_a 's are distinct because $z_a \in P_a \subset X - \{z_b\}$. So $\{P_a: a \in \Lambda\}$ is WHCP. Now, by the uncountability of Λ and $\{x_a: n \in N\} \subset \bigcap \{P_a: a \in \Lambda\}$, $\{x_a: n \in N\}$ is a closed discrete subspace of X, a contradiction. Therefore X is an X-compact space, and so X is an X-space by Lemma 1. This completes the proof of the Lemma.

By Lemma 2, we have the following Theorem.

Theorem 1 Spaces with σ -HCP pseudobases are \Re -spaces.

§ 2. Spaces with σ-HCP Closed Pseudobases

In this section we give a characterization of spaces with σ -HCP closed pseudobases.

Theorem 2 A space X has a σ -HCP closed pseudobase if and only if it is either an \mathfrak{R}_{0} -space or a σ -closed discrete space, of which all compact subsets are finite.

Proof Necessity. Suppose X is a space with σ -HCP closed pseudobases. By Lemma 2, X is either an \mathfrak{S}_0 -space or a space whose all compact subspaces are finite. Now, suppose X is a space whose all compact subspaces are finite. We shall prove that X is a σ -closed discrete space. Let $\mathscr{P} = \bigcup \{\mathscr{P}_n \colon n \in N\}$ be a σ -HCP closed pseudobase for X, where each \mathscr{P}_n is an HCP collection of closed subsets of X. We can assume that $X \in \mathscr{P}_n \subset \mathscr{P}_{n+1}$. For each $n \in N$, $x \in X$, put

$$(\mathscr{P}_n)_x = \{ P \in \mathscr{P}_n : x \in P \},$$

$$Y = \{ x \in X : \bigcap (\mathscr{P}_n)_x = \{ x \} \text{ for some } n \in N \}.$$

The proof of necessity can be completed by the following two steps.

- I. Y is a σ -closed discrete subspace for X.
- II. X-Y is countable.

First, we prove I. For each $n \in N$, put

$$Y_* = \{x \in X: \cap (\mathscr{P}_*)_x = \{x\}\}.$$

Then $Y = \bigcup \{Y_*: n \in N\}$ and each Y_* is a closed discrete subspace for X. In fact, for each $x \in X$, put

$$U = X - \bigcup \{P \in \mathscr{P}_* : x \in P\}.$$

Then U is an open neighborhood of x, because \mathscr{P}_* is a CP collection of closed subsets of X. If $y \in U \cap Y_*$, then $\bigcap (\mathscr{P}_*)_x \subset \bigcap (\mathscr{P}_*)_y$. Otherwise there would exists $z \in \bigcap (\mathscr{P}_*)_z - \bigcap (\mathscr{P}_*)_y$. Since $z \notin \bigcap (\mathscr{P}_*)_y$, there exists $P' \in \mathscr{P}_*$ such that $y \in P'$ and $z \notin P'$. By the fact that $z \in \bigcap (\mathscr{P}_*)_x$, $x \notin P'$. Hence

$$y \in U \cap ((\mathscr{P}_*)_*) \subset (X - P') \cap P' = \phi,$$

a contradiction. Thus

$$x \in \bigcap (\mathscr{D}_{\bullet})_{\bullet} \subset \bigcap (\mathscr{D}_{\bullet})_{\bullet} = \{y\}$$

by $y \in Y_*$, and x = y. This means that the open neighborhood U of x contains at most one point of Y_* , so Y_* is a closed discrete subspace of X, and Y is a σ -closed discrete subspace of X, which completes the proof of I.

For the proof of I, we prove X-Y is an \aleph_0 -space. We assert that each \mathscr{P}_* is point finite at X-Y, i. e., $(\mathscr{P}_*)_x$ is finite for each $x\in X-Y$. Otherwise $(\mathscr{P}_i)_x$ is infinite for some $i\in N$ and $x\in X-Y$. Since $x\notin Y$, $\bigcap (\mathscr{P}_i)_x-\{x\}\neq \emptyset$ for each $j\in N$. Take $x_i\in\bigcap (\mathscr{P}_i)_x-\{x\}$ and $P_i\in (\mathscr{P}_i)_x$ with $x_i\in P_i$. For each m>i, if, when $i< j\leqslant m$, we have chosen $x_j\in X-\{x\}$ and $P_j\in (P_i)_x-\{P_i,\cdots,P_{j-1}\}$ with $x_j\in P_j$, then take

$$x_{m+1} \in \bigcap (\mathscr{D}_{m+1})_z - \{x\} \subset \bigcap (\mathscr{D}_i)_z$$

and

$$P_{m+1} \in (\mathcal{D}_i)_x - \{P_i, \cdots, P_m\}$$

with $x_{m+1} \in P_{m+1}$. Thus we obtain a sequence $\{x_j\}_{j \ge i}$ of $X - \{x\}$ and a subfamily $\{P_j: j \ge i\}$ of $(\mathscr{P}_i)_x$ with $x_j \in P_j \cap (\bigcap (\mathscr{P}_j)_x)$. Now, $\{x_j: j \ge i\}$ is closed because \mathscr{P}_i is HCP, so there exist $m \ge i$ and $P \in \mathscr{P}_m$ such that

$$x \in P \subset X - \{x_j: j \geqslant i\} \subset X - \{x_m\},$$

which contradicts $x_m \in \bigcap (\mathscr{P}_m)_x \subset P$. Therefore every $(\mathscr{P}_n)_x$ is finite, and $\{P-Y: P \in \mathscr{P}\}$ is a point countable pseudobase for subspace X-Y of X. Since spaces with point countable pseudobases are \mathfrak{R}_0 -spaces (cf. [2]), X-Y is an \mathfrak{R}_0 -space. Now, there exist a separable metrizable space M and a continuous, surjective mapping (cf. [1]) $f: M \to X-Y$. Take $z(x) \in f^{-1}(x)$ for each $x \in X-Y$, and put

$$Z = \{z(x): x \in X - Y\}.$$

Then Z is a separable metrizable subspace of M, and $f|_{Z}$: $Z \rightarrow X - Y$ is one-to-one and surjective. Since X - Y is a space whose all compact subsets are finite, so is Z. In addition, Z is first countable, so Z is a separable discrete space. Hence Z is countable. Thus X - Y is countable, which completes the proof of I.

Sufficiency. If X is an \aleph_0 -space, then X has a σ -HCP closed pseudobase. Suppose X is a σ -closed discrete space, of which all compact subspaces are finite. Let $X = \bigcup \{X_n : n \in N\}$, where each X_n is a closed discrete subspace of X. For each $n \in N$, put

$$\mathscr{D}_{\bullet} = \{ P \subset \bigcup \{ X_i : i \leqslant n \} : |P| \leqslant n \}.$$

Then \mathscr{P}_n is an HCP collection of closed subsets of X because $\bigcup \{X_i : i \leq n\}$ is a closed discrete subspace of X. Since all compact subspaces of X are finite, $\bigcup \{\mathscr{P}_n : n \in N\}$ is a σ -HCP closed pseudobase of X. This completes the proof of Theorem 2.

Question Does a space with σ -HCP pseudobases have a σ -HCP closed pseudobase? Recently, we have obtained an affirmative answer to the above question (cf. [3]).

References

- [1] Michael, E., \squares, J. Math. Mech., 15(1966), 983—1002.
- [2] Lin Shou, A note on pseudo-bases (in Chinese), J. Suzhou University (Natural Science), 5(1989), 209—210.
- [3] Lin Shou, A study of pseudobases, Questions and Answers in General Topology, 6(1988), 81-97.