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This paper investigates superspaces P
0
(𝑋) and K

0
(𝑋) of a tvs-cone metric space (𝑋, 𝑑), where P

0
(𝑋) and K

0
(𝑋) are the space

consisting of nonempty subsets of𝑋 and the space consisting of nonempty compact subsets of𝑋, respectively. The purpose of this
paper is to establish some relationships between the lower topology and the lower tvs-cone hemimetric topology (resp., the upper
topology and the upper tvs-cone hemimetric topology to the Vietoris topology and the Hausdorff tvs-cone hemimetric topology)
on P

0
(𝑋) and K

0
(𝑋), which makes it possible to generalize some results of superspaces from metric spaces to tvs-cone metric

spaces.

1. Introduction

Ordered normed spaces and cones have many applications
in applied mathematics, for instance, in using Newton’s
approximation method [1–4] and in optimization theory [5].
By using an ordered Banach space instead of the set of real
numbers as the codomain for a metric, 𝐾-metric and 𝐾-
normed spaces were introduced in the mid-20th century
([2], see also [3, 4, 6]). Huang and Zhang [7] reintroduced
such spaces under the name of cone metric spaces. In some
results about metric spaces, can metric spaces be relaxed
to cone metric spaces? This is an interesting question and
many relevant results have been obtained (see [7–11], e.g.).
Recently, Khani and Pourmahdian [9] proved that each
cone metric space is metrizable, which shows that some
improvements by relaxing metric spaces to cone metric
spaces are trivial. This leads us to discuss more general
cone metric spaces, which further addresses the relationship
between metric topology and geometry. In our discussion, it
is interesting to consider certain topological groups in place
of Banach spaces in the definition of cone metric spaces,
which can serve as a topic for further studies [9]. In fact,
Du [12] introduced and investigated tvs-cone metric spaces
by replacing Banach spaces with topological vector spaces
in the definition of cone metric spaces. In the past years,

tvs-cone metric spaces have aroused many mathematical
scholars’ interests and some interesting results have been
obtained (see [12–15], e.g.). As an important result for tvs-
cone metric spaces, it is proved that each tvs-cone metric
space ismetrizable ([13, 14], e.g.), whichmakes it meaningless
to research topological properties of tvs-cone metric spaces.
However, we notice that some results related to nontopo-
logical properties, for example, metric properties (includ-
ing hemimetric properties), are not direct consequences of
known theorems. In particular, we are interested in tvs-cone
hemimetric properties on superspaces of tvs-cone metric
spaces.

In fact, superspace is an important concept in topological
spaces theory. For superspaces of metric spaces, we often deal
with six topologies: the lower topology, the lower hemimetric
topology, the upper topology, the upper hemimetric topology,
the Vietoris topology, and the Hausdorff hemimetric topol-
ogy. What relationships are there among these topologies? It
is an interesting question. LetP

0
(𝑋) andK

0
(𝑋) be the space

consisting of nonempty subsets of𝑋 and the space consisting
of nonempty compact subsets of𝑋, respectively. And then the
following two theorems are well known (see [16], e.g.).

Theorem 1. Let (𝑋, 𝑑) be a metric space and letC be a subset
ofP
0
(𝑋). Then the following hold.
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(1) IfC is open in the lower topology onP
0
(𝑋), thenC is

open in the lower hemimetric topology onP
0
(𝑋).

(2) If C is open in the upper hemimetric topology on
P
0
(𝑋), thenC is open in the upper topology onP

0
(𝑋).

Theorem 2. Let (𝑋, 𝑑) be a metric space. Then the following
hold.

(1) The lower topology and the lower hemimetric topology
coincide onK

0
(𝑋).

(2) The upper topology and the upper hemimetric topology
coincide onK

0
(𝑋).

(3) The Vietoris topology and the Hausdorff hemimetric
topology coincide onK

0
(𝑋).

As a concrete exploration for tvs-cone metric properties,
the following question arises fromTheorems 1 and 2 naturally.

Question 1. CanTheorems 1 and 2 be generalized frommetric
space to tvs-cone metric space?

This paper investigates superspacesP
0
(𝑋) andK

0
(𝑋) of

a tvs-cone metric space (𝑋, 𝑑). The purpose of this paper is
to establish some relationships between the lower topology
and the lower tvs-cone hemimetric topology (resp., the upper
topology and the upper tvs-cone hemimetric topology and
the Vietoris topology and the Hausdorff tvs-cone hemimetric
topology) on P

0
(𝑋) and K

0
(𝑋), respectively. These results

answer Question 1 affirmatively and make it possible to
generalize the discussions for superspaces frommetric spaces
to tvs-cone metric spaces.

Throughout this paper, N, R+, and R∗ denote the set of
all natural numbers, the set of all positive real numbers, and
the set of all nonnegative real numbers, respectively.

2. TVS-Cone Metric Spaces

Definition 3 (see [12, 14]). Let 𝐸 be a topological vector space
with its zero vector 𝜃. A subset 𝑃 of 𝐸 is called a tvs-cone in
𝐸 if the following are satisfied.

(1) 𝑃 is a closed in 𝐸 with a nonempty interior 𝑃∘.
(2) 𝛼, 𝛽 ∈ 𝑃 and 𝑎, 𝑏 ∈ R∗ ⇒ 𝑎𝛼 + 𝑏𝛽 ∈ 𝑃.
(3) 𝛼, −𝛼 ∈ 𝑃 ⇒ 𝛼 = 𝜃.

Remark 4. Let𝐸 be a topological vector space with a tvs-cone
𝑃. It is clear that 𝜃 ∈ 𝑃 from Definition 3(2). In addition, it
is easy to see that 𝜃 ∉ 𝑃

∘. In fact, pick 𝛼 ∈ 𝐸 − {𝜃}. Then
{(1/𝑛)𝛼} → 𝜃 and {−(1/𝑛)𝛼} → 𝜃 when 𝑛 → ∞. If 𝜃 ∈ 𝑃∘,
then there is 𝑛 ∈ N such that {(1/𝑛)𝛼, −(1/𝑛)𝛼} ⊆ 𝑃∘ ⊆ 𝑃.
By Definition 3(3), (1/𝑛)𝛼 = 𝜃. This contradicts that 𝛼 ̸= 𝜃. So
𝜃 ∉ 𝑃
∘.

Definition 5 (see [12, 14]). Let 𝐸 be a topological vector space
with a tvs-cone 𝑃. Some partial orderings ≤, <, and ≪ on
𝐸 with respect to 𝑃 are defined as follows, respectively. Let
𝛼, 𝛽 ∈ 𝐸.

(1) 𝛼 ≤ 𝛽 if 𝛽 − 𝛼 ∈ 𝑃.
(2) 𝛼 < 𝛽 if 𝛼 ≤ 𝛽 and 𝛼 ̸= 𝛽.
(3) 𝛼 ≪ 𝛽 if 𝛽 − 𝛼 ∈ 𝑃

∘.

Remark 6. For the sake of convenience, we also use notations
“≥”, “>,” and “≫” on 𝐸 with respect to 𝑃. The meanings of
these notations are clear and the following hold:

(1) 𝛼 ≥ 𝛽 ⇔ 𝛼 − 𝛽 ≥ 𝜃 ⇔ 𝛼 − 𝛽 ∈ 𝑃,
(2) 𝛼 > 𝛽 ⇔ 𝛼 − 𝛽 > 𝜃 ⇔ 𝛼 − 𝛽 ∈ 𝑃 − {𝜃},
(3) 𝛼 ≫ 𝛽 ⇔ 𝛼 − 𝛽 ≫ 𝜃 ⇔ 𝛼 − 𝛽 ∈ 𝑃∘,
(4) 𝛼 ≫ 𝛽 ⇒ 𝛼 > 𝛽 ⇒ 𝛼 ≥ 𝛽.

Definition 7 (see [10]). A tvs-cone 𝑃 in a topological vector
space 𝐸 is called strongly minihedral if each subset of 𝐸

bounded above has a supremum, equivalently, if each subset
of 𝐸 bounded below has an infimum.

In this paper, we always suppose that a tvs-cone 𝑃 in a
topological vector space 𝐸 is strongly minihedral.

Lemma 8. Let 𝐸 be a topological vector space with a tvs-cone
𝑃. Then the following hold.

(1) If 𝛼 ≫ 𝜃, then 𝑟𝛼 ≫ 𝜃 for each 𝑟 ∈ R+.
(2) If 𝛼

1
≫ 𝛽
1
and 𝛼

2
≥ 𝛽
2
, then 𝛼

1
+ 𝛼
2
≫ 𝛽
1
+ 𝛽
2
.

(3) If 𝛼 ≫ 𝜃 and 𝛽 ≫ 𝜃, then there is 𝛾 ≫ 𝜃 such that
𝛾 ≪ 𝛼 and 𝛾 ≪ 𝛽.

Proof. (1) Let 𝛼 ≫ 𝜃; that is, 𝛼 ∈ 𝑃∘. Then there is an open
neighborhood 𝐵 of 𝛼 in 𝐸 such that 𝐵 ⊆ 𝑃. If 𝑟 ∈ R+, then
𝑟𝐵 ⊆ 𝑃 from Definition 3(2), where 𝑟𝐵 = {𝑟𝛽 : 𝛽 ∈ 𝐵}. Note
that 𝑟𝛼 ∈ 𝑟𝐵 and 𝑟𝐵 is an open subset of 𝐸. So 𝑟𝛼 ∈ 𝑃

∘; that is
𝑟𝛼 ≫ 𝜃.

(2) Let 𝛼
1

≫ 𝛽
1
and 𝛼

2
≥ 𝛽
2
. Then 𝛼

1
− 𝛽
1

≫ 𝜃 and
𝛼
2
− 𝛽
2
≥ 𝜃; that is, 𝛼

1
− 𝛽
1
∈ 𝑃∘ and 𝛼

2
− 𝛽
2
∈ 𝑃. So there is

an open neighborhood𝐵 of𝛼
1
−𝛽
1
in𝐸 such that𝐵 ⊆ 𝑃.Write

(𝛼
2
−𝛽
2
)+𝐵 = {(𝛼

2
−𝛽
2
)+𝛽 : 𝛽 ∈ 𝐵}. Note that (𝛼

2
−𝛽
2
)+𝐵 is

an open subset of𝐸, and (𝛼
2
−𝛽
2
)+(𝛼
1
−𝛽
1
) ∈ (𝛼

2
−𝛽
2
)+𝐵 ⊆ 𝑃

from Definition 3(2). So (𝛼
2
− 𝛽
2
) + (𝛼

1
− 𝛽
1
) ∈ 𝑃∘; that is,

(𝛼
2
− 𝛽
2
) + (𝛼

1
− 𝛽
1
) ≫ 𝜃; hence, (𝛼

1
+ 𝛼
2
) − (𝛽

1
+ 𝛽
2
) ≫ 𝜃.

It follows that 𝛼
1
+ 𝛼
2
≫ 𝛽
1
+ 𝛽
2
.

(3) Let 𝛼 ≫ 𝜃 and 𝛽 ≫ 𝜃; that is, 𝛼, 𝛽 ∈ 𝑃∘. Then there is
𝑛
1
, 𝑛
2
∈ N such that 𝛼 − ((𝛼 + 𝛽)/𝑛) ∈ 𝑃∘ for all 𝑛 ≥ 𝑛

1
and

𝛽 − ((𝛼 + 𝛽)/𝑛) ∈ 𝑃∘ for all 𝑛 ≥ 𝑛
2
. Put 𝛾 = (𝛼 + 𝛽)/𝑛

0
, where

𝑛
0
= max{𝑛

1
, 𝑛
2
}. Then 𝛾 ≫ 𝜃 from the above (1) and (2). It

is clear that 𝛼 − 𝛾 ∈ 𝑃∘ and 𝛽 − 𝛾 ∈ 𝑃∘; that is, 𝛼 − 𝛾 ≫ 𝜃 and
𝛽 − 𝛾 ≫ 𝜃. So 𝛾 ≪ 𝛼 and 𝛾 ≪ 𝛽.

We give the definition of tvs-cone metric, which is very
similar to the well-known definition of metric.

Definition 9 (see [14]). Let 𝑋 be a nonempty set and let 𝐸 be
a topological vector space with a tvs-cone 𝑃. A mapping 𝑑 :

𝑋 × 𝑋 → 𝐸 is called a tvs-cone metric on 𝑋, and (𝑋, 𝑑) is
called a tvs-cone metric space if the following are satisfied.

(1) 𝑑(𝑥, 𝑦) ≥ 𝜃 for all 𝑥, 𝑦 ∈ 𝑋 and 𝑑(𝑥, 𝑦) = 𝜃 if and only
if 𝑥 = 𝑦.
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(2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋.
(3) 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋.

Note that hemimetric takes values in the extended non-
negative real numbers ([16]). We let ∞ as a possible value of
the mapping 𝑑 in the following definition, where ∞ ∉ 𝐸 and
the following hold.

(a) ∞ + 𝛼 = ∞ + ∞ = ∞ for each 𝛼 ∈ 𝐸.
(b) 𝛼 ≪ ∞ for each 𝛼 ∈ 𝐸.

Definition 10. Let 𝑋 be a nonempty set and let 𝐸 be a
topological vector space with a tvs-cone 𝑃. A mapping 𝑑 :

𝑋×𝑋 → 𝐸⋃{∞} is called a tvs-cone hemimetric on𝑋, and
(𝑋, 𝑑) is called a tvs-cone hemimetric space if the following
(1) and (2) are satisfied.

(1) 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋.
(2) 𝑑(𝑥, 𝑥) = 𝜃 for all 𝑥 ∈ 𝑋.

Proposition 11. Let (𝑋, 𝑑) be a tvs-cone hemimetric space. Put
𝐵(𝑥, 𝜀) = {𝑦 ∈ 𝑋 : 𝑑(𝑥, 𝑦) ≪ 𝜀} for 𝑥 ∈ 𝑋 and 𝜀 ≫ 𝜃, and put
B = {𝐵(𝑥, 𝜀) : 𝑥 ∈ 𝑋 𝑎𝑛𝑑 𝜀 ≫ 𝜃}. ThenB is a base for some
topology on 𝑋.

Proof. It is clear that 𝑋 = ⋃B. Let 𝐵(𝑥, 𝛼), 𝐵(𝑦, 𝛽) ∈ B and
𝑧 ∈ 𝐵(𝑥, 𝛼)⋂𝐵(𝑦, 𝛽). Since 𝑧 ∈ 𝐵(𝑥, 𝛼), 𝑑(𝑥, 𝑧) ≪ 𝛼. Put
𝛾
1
= 𝛼−𝑑(𝑥, 𝑧); then 𝛾

1
≫ 𝜃.We claim that𝐵(𝑧, 𝛾

1
) ⊆ 𝐵(𝑥, 𝛼).

In fact, if 𝑢 ∈ 𝐵(𝑧, 𝛾
1
), then 𝑑(𝑧, 𝑢) ≪ 𝛾

1
; hence, 𝑑(𝑥, 𝑢) ≤

𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑢) ≪ 𝑑(𝑥, 𝑧) + 𝛾
1

= 𝛼, and so 𝑢 ∈ 𝐵(𝑥, 𝛼).
Using the same way, we can obtain that there is 𝛾

2
≫ 𝜃 such

that 𝐵(𝑧, 𝛾
2
) ⊆ 𝐵(𝑦, 𝛽). By Lemma 8(3), there is 𝛾 ≫ 𝜃 such

that 𝛾 ≪ 𝛾
1
and 𝛾 ≪ 𝛾

2
. Let V ∈ 𝐵(𝑧, 𝛾); then 𝑑(𝑧, V) ≪

𝛾 ≪ 𝛾
1
and 𝑑(𝑧, V) ≪ 𝛾 ≪ 𝛾

2
, so V ∈ 𝐵(𝑧, 𝛾

1
) ⊆ 𝐵(𝑥, 𝛼) and

V ∈ 𝐵(𝑧, 𝛾
2
) ⊆ 𝐵(𝑦, 𝛽), and hence V ∈ 𝐵(𝑥, 𝛼)⋂𝐵(𝑦, 𝛽). This

has proved that 𝐵(𝑧, 𝛾) ⊆ 𝐵(𝑥, 𝛼)⋂𝐵(𝑦, 𝛽). Note that 𝑧 ∈

𝐵(𝑧, 𝛾) ∈ B. Consequently,B is a base for some topology on
𝑋. In fact, put 𝜏 = {𝑈 ⊆ 𝑋 : there is B󸀠 ⊆ B s𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑈 =

⋃B󸀠}; then 𝜏 is a topology on𝑋 andB is a base for 𝜏.

3. Superspaces of TVS-Cone Metric Spaces

Definition 12. Let (𝑋, 𝑑) be a tvs-cone metric space and let 𝜏
denote the topology on 𝑋 induced by the tvs-cone metric 𝑑

described in Proposition 11. For an arbitrary nonempty subset
𝐺 of𝑋, [0, 𝐺] and 𝐼

𝐺
denote the subfamilies {𝑃 ∈ P

0
(𝑋) : 𝑃 ⊆

𝐺} and {𝑃 ∈ P
0
(𝑋) : 𝑃⋂𝐺 ̸= 0} ofP

0
(𝑋), respectively.

(1) TL is called the lower topology onP
0
(𝑋), whereTL

is generated by the subbaseL = {𝐼
𝐺
: 𝐺 ∈ 𝜏}.

(2) TU is called the upper topology onP
0
(𝑋), whereTU

is generated by the baseU = {[0, 𝐺] : 𝐺 ∈ 𝜏}.
(3) TV is called the Vietoris topology on P

0
(𝑋), where

TV is generated byL andU together.

Definition 13. Let (𝑋, 𝑑) be a tvs-cone metric space. For
𝑃,𝑄 ∈ P

0
(𝑋), put 𝛿

𝑙
(𝑃, 𝑄) = inf{𝜀 ≫ 𝜃 : 𝑃 ⊆ 𝑆(𝑄, 𝜀)},

𝛿
𝑢
(𝑃, 𝑄) = inf{𝜀 ≫ 𝜃 : 𝑄 ⊆ 𝑆(𝑃, 𝜀)}, and 𝛿(𝑃, 𝑄) = inf{𝜀 ≫

𝜃 : 𝜀 ≫ 𝛿
𝑙
(𝑃, 𝑄) and 𝜀 ≫ 𝛿

𝑢
(𝑃, 𝑄)}, where inf 0 = ∞. Then

𝛿
𝑙
, 𝛿
𝑢
, and 𝛿 are tvs-cone hemimetrics onP

0
(𝑋). LetT

𝑙
,T
𝑢
,

andT denote the topologies onP
0
(𝑋) induced by 𝛿

𝑙
, 𝛿
𝑢
, and

𝛿 described in Proposition 11, respectively.

(1) The topology T
𝑙
is called the lower tvs-cone hemi-

metric topology.
(2) The topology T

𝑢
is called the upper tvs-cone hemi-

metric topology.
(3) The topology T is called the Hausdorff tvs-cone

hemimetric topology.

Remark 14. It is often preferable to restrict the six topologies
TL, TU, TV T

𝑙
, T
𝑢
, and T to K

0
(𝑋), and the relative

topologies on K
0
(𝑋) will still be denoted by TL, and so

forth. Also, if 𝛿
𝑢
(resp., 𝛿

𝑙
, 𝛿) is restricted to K

0
(𝑋), then it

does not take∞.

In this section, we need to use the following notation.

Notation. Let (𝑋, 𝑑) be a tvs-cone metric space, 𝑥 ∈ 𝑋, 𝑃 ∈

P
0
(𝑋), 𝐾 ∈ K

0
(𝑋), and 𝜀 ≫ 𝜃. Consider the following:

(1) 𝐵(𝑥, 𝜀) = {𝑦 ∈ 𝑋 : 𝑑(𝑥, 𝑦) ≪ 𝜀},
(2) 𝑆(𝑃, 𝜀) = ⋃{𝐵(𝑥, 𝜀) : 𝑥 ∈ 𝑃},
(3) 𝐵
𝑙
(𝑃, 𝜀) = {𝑃󸀠 ∈ P

0
(𝑋) : 𝛿

𝑙
(𝑃, 𝑃󸀠) ≪ 𝜀},

(4) 𝐵
𝑢
(𝑃, 𝜀) = {𝑃󸀠 ∈ P

0
(𝑋) : 𝛿

𝑢
(𝑃, 𝑃󸀠) ≪ 𝜀},

(5) 𝐶
𝑙
(𝐾, 𝜀) = {𝐾󸀠 ∈ K

0
(𝑋) : 𝛿

𝑙
(𝐾,𝐾󸀠) ≪ 𝜀},

(6) 𝐶
𝑢
(𝐾, 𝜀) = {𝐾󸀠 ∈ K

0
(𝑋) : 𝛿

𝑢
(𝐾,𝐾󸀠) ≪ 𝜀},

(7) 𝐶(𝐾, 𝜀) = {𝐾󸀠 ∈ K
0
(𝑋) : 𝛿(𝐾,𝐾󸀠) ≪ 𝜀}.

Theorem 15. Let (𝑋, 𝑑) be a tvs-cone metric space and let C
be a subset ofP

0
(𝑋). Then the following hold.

(1) IfC is open in the lower topologyTL onP
0
(𝑋), then

C is open in the lower tvs-cone hemimetric topologyT
𝑙

onP
0
(𝑋).

(2) IfC is open in the upper tvs-cone hemimetric topology
T
𝑢
on P
0
(𝑋), then C is open in the upper topology

TU onP
0
(𝑋).

Proof. (1)LetC be open in the lower topologyTL onP
0
(𝑋).

Without loss of generality, we can assume thatC is an element
in the subbaseL for the lower topologyTL; that is,C = 𝐼

𝐺

for some 𝐺 ∈ T. Let 𝑃 ∈ C, then 𝑃⋂𝐺 ̸= 0. Pick 𝑥 ∈ 𝑃⋂𝐺;
then there is 𝜀 ≫ 𝜃 such that 𝐵(𝑥, 𝜀) ⊆ 𝐺 since𝐺 is open in𝑋.
Let 𝑄 ∈ 𝐵

𝑙
(𝑃, 𝜀); then 𝛿

𝑙
(𝑃, 𝑄) ≪ 𝜀; that is, 𝑃 ⊆ 𝑆(𝑄, 𝜀). Since

𝑥 ∈ 𝑃, 𝑥 ∈ 𝑆(𝑄, 𝜀), hence 𝑥 ∈ 𝐵(𝑦, 𝜀) for some 𝑦 ∈ 𝑄. Thus,
𝑦 ∈ 𝐵(𝑥, 𝜀) ⊆ 𝐺, which means that 𝑄⋂𝐺 ̸= 0. It follows that
𝑄 ∈ C.This proves that 𝐵

𝑙
(𝑃, 𝜀) ⊆ C. So 𝑃 is an interior point

of C in the lower tvs-cone hemimetric topology T
𝑙
and the

proof is completed.
(2) Let C be open in the upper tvs-cone hemimetric

topology T
𝑢
on P

0
(𝑋). Let 𝑃 ∈ C; then there is 𝜀 ≫ 𝜃

such that 𝐵
𝑢
(𝑃, 𝜀) ⊆ C. Note that 𝑆(𝑃, 𝜀) is open in 𝑋. So

[0, 𝑆(𝑃, 𝜀)] is open in the upper topology on P
0
(𝑋). Clearly,

𝑃 ∈ [0, 𝑆(𝑃, 𝜀)]. On the other hand, if 𝑄 ∈ [0, 𝑆(𝑃, 𝜀)], that is,
𝑄 ⊆ 𝑆(𝑃, 𝜀), then 𝛿

𝑢
(𝑃, 𝑄) ≪ 𝜀, and hence 𝑄 ∈ 𝐵

𝑢
(𝑃, 𝜀) ⊆ C.
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This has proved that [0, 𝑆(𝑃, 𝜀)] ⊆ C. Consequently, C is
an open neighborhood of 𝑃 for the upper topology TU on
P
0
(𝑋) and the proof is completed.

Remark 16. (1) The converses of both (1) and (2) in
Theorem 15 are not true (even if (𝑋, 𝑑) is a metric space).
Moreover, there is no simple relationship between the
Vietoris topologyTV and the Hausdorff tvs-cone hemimet-
ric topology T on P

0
(𝑋), which is similar to (1) or (2) in

Theorem 15 (see [16], e.g.).
(2) It is clear that “P

0
(𝑋)” inTheorem 15 can be replaced

by K
0
(𝑋). Furthermore, we have the better results for the

topologies on superspacesK
0
(𝑋) (see the following).

Lemma 17. Let (𝑋, 𝑑) be a tvs-cone metric space. If 𝐾 is a
compact subset of𝑋, then, for any 𝜀 ≫ 𝜃, there is a finite subset
𝐹 of 𝐾 such that 𝐾 ⊆ 𝑆(𝐹, 𝜀).

Proof. Let 𝐾 be a compact subset of 𝑋 and let 𝜀 ≫ 𝜃. Then
{𝐵(𝑥, 𝜀) : 𝑥 ∈ 𝐾} is an open cover of𝐾; there is a finite subset
𝐹 of 𝐾 such that {𝐵(𝑥, 𝜀) : 𝑥 ∈ 𝐹} covers 𝐾. It follows that
𝐾 ⊆ 𝑆(𝐹, 𝜀).

Lemma 18. Let (𝑋, 𝑑) be a tvs-cone metric space. If 𝐾 ⊆ 𝑈

with 𝐾 compact in 𝑋 and 𝑈 open in 𝑋, then there is 𝜀 ≫ 𝜃

such that 𝑆(𝐾, 𝜀) ⊆ 𝑈.

Proof. Let 𝐾 ⊆ 𝑈 with 𝐾 compact in 𝑋 and 𝑈 open in 𝑋.
By Proposition 11, for each 𝑥 ∈ 𝐾 ⊆ 𝑈, there is 𝜂

𝑥
≫ 𝜃

such that 𝐵(𝑥, 𝜂
𝑥
) ⊆ 𝑈. Put 𝜀

𝑥
= (1/2)𝜂

𝑥
; then 𝜀

𝑥
≫ 𝜃 from

Lemma 8(1). Since {𝐵(𝑥, 𝜀
𝑥
) : 𝑥 ∈ 𝐾} is an open cover of

𝐾 and 𝐾 is compact, there is a finite subset 𝐹 of 𝐾 such that
{𝐵(𝑥, 𝜀

𝑥
) : 𝑥 ∈ 𝐹} covers 𝐾. By Lemma 8(3), there is 𝜀 ≫ 𝜃

such that 𝜀 ≪ 𝜀
𝑥
for each 𝑥 ∈ 𝐹. We claim that 𝑆(𝐾, 𝜀) ⊆ 𝑈.

In fact, let 𝑢 ∈ 𝑆(𝐾, 𝜀); then there is 𝑦 ∈ 𝐾 such that
𝑢 ∈ 𝐵(𝑦, 𝜀), that is, 𝑑(𝑢, 𝑦) ≪ 𝜀. Furthermore, there is 𝑧 ∈ 𝐹

such that 𝑦 ∈ 𝐵(𝑧, 𝜀
𝑧
); that is, 𝑑(𝑦, 𝑧) ≪ 𝜀

𝑧
. By Lemma 8(2),

𝑑(𝑢, 𝑧) ≤ 𝑑(𝑢, 𝑦)+𝑑(𝑦, 𝑧) ≪ 𝜀+𝜀
𝑧
≪ 2𝜀
𝑧
= 𝜂
𝑧
. It follows that

𝑢 ∈ 𝐵(𝑧, 𝜂
𝑧
) ⊆ 𝑈. This has proved that 𝑆(𝐾, 𝜀) ⊆ 𝑈.

Theorem 19. Let (𝑋, 𝑑) be a tvs-cone metric space. Then the
following hold.

(1) The lower topology TL and the lower tvs-cone hemi-
metric topologyT

𝑙
coincide onK

0
(𝑋).

(2) The upper topology TU and the upper tvs-cone hemi-
metric topologyT

𝑢
coincide onK

0
(𝑋).

(3) The Vietoris topology TV and the Hausdorff tvs-cone
hemimetric topologyT coincide onK

0
(𝑋).

Proof. (1) Assume that C is open in the lower hemimetric
topologyT

𝑙
onK

0
(𝑋). Let 𝐾 ∈ C; then there is 𝜀 ≫ 𝜃 such

that 𝐶
𝑙
(𝐾, 𝜀) ⊆ C. Since 𝐾 is compact, by Lemma 17, there

is a finite subset 𝐹 of 𝐾 such that 𝐾 ⊆ 𝑆(𝐹, 𝜀/2). We write
𝐺
𝑥
= 𝐵(𝑥, 𝜀/2) for each 𝑥 ∈ 𝐹 and putW = ⋂{𝐼

𝐺
𝑥

: 𝑥 ∈ 𝐹}.
Note that 𝐵(𝑥, 𝜀/2) ∈ T for each 𝑥 ∈ 𝐹. It is clear that𝐾 ∈ W
and W is an element of the base for the lower topology TL

on K
0
(𝑋). Let 𝐾󸀠 ∈ W. For each 𝑥 ∈ 𝐹, we claim that

𝐺
𝑥
⊆ 𝑆(𝐾󸀠, 𝜀). In fact, let 𝑦 ∈ 𝐺

𝑥
; then 𝑑(𝑥, 𝑦) ≪ 𝜀/2. Since

𝐾
󸀠 ∈ 𝐼
𝐺
𝑥

, 𝐾󸀠⋂𝐺
𝑥

̸= 0. Pick 𝑧 ∈ 𝐾󸀠⋂𝐺
𝑥
; then 𝑑(𝑧, 𝑥) ≪ 𝜀/2;

hence, 𝑑(𝑧, 𝑦) ≤ 𝑑(𝑧, 𝑥) + 𝑑(𝑥, 𝑦) ≪ 𝜀/2 + 𝜀/2 = 𝜀; that
is, 𝑦 ∈ 𝐵(𝑧, 𝜀) ⊆ 𝑆(𝐾

󸀠, 𝜀). This proves that 𝐺
𝑥

⊆ 𝑆(𝐾󸀠, 𝜀).
Furthermore, 𝐾 ⊆ 𝑆(𝐹, 𝜀/2) = ⋃{𝐺

𝑥
: 𝑥 ∈ 𝐹} ⊆ 𝑆(𝐾󸀠, 𝜀).

Thus, 𝛿
𝑙
(𝐾,𝐾󸀠) ≪ 𝜀; that is, 𝐾󸀠 ∈ 𝐶

𝑙
(𝐾, 𝜀) ⊆ C. This proves

thatW ⊂ C. It follows that𝐾 is an interior point ofC for the
lower topology TL on K

0
(𝑋). Consequently, C is open in

the lower topologyTL onK
0
(𝑋). CombiningRemark 16(2),

the proof is completed.
(2) Let C be open in the upper topologyTU onK

0
(𝑋).

Without loss of generality, we can assume thatC is an element
of the base for the upper topologyTU onK

0
(𝑋); that is,C =

[0, 𝐺]⋂K
0
(𝑋) for some 𝐺 ∈ T. Let 𝐾 ∈ C; then 𝐾 ⊆ 𝐺

and𝐾 is compact. By Lemma 18, there exists 𝜀 ≫ 𝜃 such that
𝑆(𝐾, 𝜀) ⊆ 𝐺. If 𝐾󸀠 ∈ 𝐶

𝑢
(𝐾, 𝜀); then 𝛿

𝑢
(𝐾,𝐾󸀠) ≪ 𝜀; hence,

𝐾󸀠 ⊆ 𝑆(𝐾, 𝜀) ⊆ 𝐺. It follows that 𝐾󸀠 ∈ [0, 𝐺]⋂K
0
(𝑋) = C.

Consequently, 𝐶
𝑢
(𝐾, 𝜀) ⊆ C. This has proved that C is an

open neighborhood of 𝐾 for the upper tvs-cone hemimetric
topologyT

𝑢
onK

0
(𝑋). Combining Remark 16(2), the proof

is completed.

We need to prove thatTV ⊆ T andT ⊆ TV. Let C be
open in the Vietoris topology TV on K

0
(𝑋). Without loss

of generality, we only need to assume that C is an element
of the subbase L for the lower topology TL or an element
of the base U for the upper topology TU. If C ∈ L, then
C ∈ T

𝑙
by (1). So, for each 𝐾 ∈ C, there is 𝜀 ≫ 𝜃 such

that 𝐶
𝑙
(𝐾, 𝜀) ⊆ C. It is clear that 𝐶(𝐾, 𝜀) ⊆ 𝐶

𝑙
(𝐾, 𝜀). In fact,

if 𝐾󸀠 ∈ 𝐶(𝐾, 𝜀), then 𝛿(𝐾,𝐾󸀠) ≪ 𝜀. Note that 𝛿
𝑙
(𝐾,𝐾󸀠) ≤

𝛿(𝐾,𝐾󸀠) ≪ 𝜀. So 𝐾󸀠 ∈ 𝐶
𝑙
(𝐾, 𝜀). It follows that 𝐾 ∈

𝐶(𝐾, 𝜀) ⊆ 𝐶
𝑙
(𝐾, 𝜀) ⊆ C. So𝐾 is an interior point ofC for the

Hausdorff tvs-cone hemimetric topology T. Consequently,
C is open in the Hausdorff tvs-cone hemimetric topologyT
on K

0
(𝑋). By a similar way, if C ∈ U, then C is open in

the Hausdorff tvs-cone hemimetric topology T on K
0
(𝑋).

This has proved that TV ⊆ T. Conversely, let C be open in
the Hausdorff tvs-cone hemimetric topology T on K

0
(𝑋).

Then, for each 𝐾 ∈ C, there is 𝜀 ≫ 𝜃 such that 𝐶(𝐾, 𝜀) ⊆ C.
We claim that 𝐶

𝑙
(𝐾, 𝜀/2)⋂𝐶

𝑢
(𝐾, 𝜀/2) ⊆ 𝐶(𝐾, 𝜀). In fact, if

𝐾󸀠 ∈ 𝐶
𝑙
(𝐾, 𝜀/2)⋂𝐶

𝑢
(𝐾, 𝜀/2), then 𝛿

𝑙
(𝐾,𝐾󸀠) ≪ 𝜀/2 and

𝛿
𝑢
(𝐾,𝐾󸀠) ≪ 𝜀/2. So 𝛿(𝐾,𝐾󸀠) ≤ 𝛿

𝑙
(𝐾,𝐾󸀠) + 𝛿

𝑢
(𝐾,𝐾󸀠) ≪

𝜀/2 + 𝜀/2 = 𝜀; hence, 𝐾󸀠 ∈ 𝐶(𝐾, 𝜀). This proves that
𝐶
𝑙
(𝐾, 𝜀/2)⋂𝐶

𝑢
(𝐾, 𝜀/2) ⊆ 𝐶(𝐾, 𝜀). By (1) and (2), 𝐶

𝑙
(𝐾, 𝜀/2)

and 𝐶
𝑢
(𝐾, 𝜀/2) are open in TL and TU, respectively. It

follows that𝐶
𝑙
(𝐾, 𝜀/2)⋂𝐶

𝑢
(𝐾, 𝜀/2) is open inTV. So𝐾 is an

interior point of C for the Vietoris topologyTV onK
0
(𝑋).

Consequently, C is open in the Vietoris topology TV on
K
0
(𝑋). This has proved thatT ⊆ TV.
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on tvs-cone metric fixed point theory,” Mathematical and
Computer Modelling, vol. 54, no. 9-10, pp. 2418–2422, 2011.

[16] E. Klein and A. C. Thompson, Theory of Correspondences,
Including Applications to Mathematical Economics, John Wiley
& Sons, New York, NY, USA, 1984.



Submit your manuscripts at
http://www.hindawi.com

 Operations
Research

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Mathematical Problems 
in Engineering

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

ISRN 
Applied 
Mathematics

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2013

International Journal of

Combinatorics

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Journal of Function Spaces

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

ISRN 
Geometry

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2013

Advances in

Mathematical Physics

ISRN 
Algebra

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Probability
and
Statistics

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

ISRN 
Mathematical 
Analysis

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Journal of
Applied Mathematics

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

 Advances in

Decision
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Stochastic Analysis
International Journal of

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013

The Scientific 
World Journal

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

ISRN 
Discrete 
Mathematics 

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2013


