Additive k-Metric Spaces are y-spaces

Lin Shou (林 寿)

(Department of Mathematics, Ningde Teachers' College, Fujian, 352100)

Abstract In this paper, we prove that additive k-metric spaces are γ -spaces. So if an additive k-metric space is a quasi-Nagata space or a paracompact β -space, it is a metrizable space.

Key Words γ -space; β -space; Additive k-metric Space; Quasi-Nagata Space; Paracompact Space

Ščepin^[1] introducted the notion of k-metrizability as a generalization of metric spaces. Dranišnikov^[2] defined the additivity of k-metric space and asserted that if an additive k-metric space is compact, it is metrizable. Isiwata^[3] discussed the metrization problem of additive k-metric spaces and proved that if an additive k-metric space is a wM-space or a paracompact β -space, it is a metrizable space. One can ask the following question: is an additive k-metric space any kind of generalized metric space?

Let Rc(X) be the collection of regular closed subsets of a topological space X. (X, d) is said to be an additive k-metric space if there exists a mapping $d: X \times Rc(X) \rightarrow [0, \infty)$ satisfying the following conditions:

- (i) $d(x, C) = 0 \Leftrightarrow x \in C$,
- (ii) $C \subset D \Rightarrow d(x,C) \geqslant d(x,D)$ for each $x \in X$,
- (iii) d(x, C) is continuous with respect to x for every $C \in Rc(X)$,
- (iv) $d(x, cl(\bigcup \{C_a: a \in A\})) = \inf\{d(x, C_a): a \in A\}.$

d is called an additive k-metric on X.

Throughout this paper, we mean by a space a Tychonoff space. We denote by N the set of positive integers, and by (x_*) the sequence whose n-th element is x_* . For a given closed set F of an additive k-metric space (X, d) we put $\text{Rci}(F) = \{C \in \text{Rc}(X) : F \subset \text{int}C\}$, $\text{Rci}(x) = \text{Rci}(\{x\})$, and define

$$\begin{cases} z(x, F) = \sup\{d(x, C) \colon C \in \operatorname{Rci}(F)\}, \\ z(H, F) = \inf\{z(x, F) \colon x \in H\}. \end{cases}$$
 (1)

Then for each $x \in H$ and $y \in F$, $z(H, F) \le z(x, y)$ (see [3]). A space (X, T) is a y-space (see [4]) if there exists a function $g: N \times X \to T$ such that $x_* \to p$ whenever $y_* \in g(n, p)$ and $x_* \in g(n, y_*)$.

Theorem Additive k-metric spaces are γ -spaces.

Proof Suppose (X, d) is an additive k-metric space. For each $n \in \mathbb{N}$, $x \in X$, let

Received Dec. 28, 1987.

$$g(n, x) = \inf\{y: z(x, y) < 1/n\}.$$

If $z(x, y) \ge 1/n$, then there exists $C(y) \in \text{Rci}(y)$ with d(x, C(y)) > 1/2n. Put $C = \text{cl}(\bigcup \{C(y): z(x, y) \ge 1/n\})$. Then $d(x, C) \ge 1/2n$ by (iv). Hence

$$x \in X - C = \operatorname{int}(X - C) \subset \{y \colon z(x, y) < 1/n\},$$

so $x \in g(n, x)$. Suppose $y_* \in g(n, p)$ and $x_* \in g(n, y_*)$. If p is not a cluster point of the sequence (x_*) , without loss of generality, we can assume that $p \in \{x_*, n \in N\}$ and hence $p \in \operatorname{cl}(\{x_*, n \in N\}) = F$. Therefore z(p, F) = 2a > 0 by (1) and (i). Take $C \in \operatorname{Rci}(F)$ with d(p, C) > a. By (iii) there exists $H \in \operatorname{Rci}(p)$ with d(h, C) > a for each $h \in H$, and hence z(h, F) > a for each $h \in H$, so z(H, F) > 0. But, on the other hand, if $\{h_1, z(p, h) < 1/n\} \not\subset H$ for each $n \in N$, then there exists a sequence (h_*) such that $z(p, h_*) < 1/n$ and $h_* \in X - H$. Put $F_1 = X - \inf H$. Then $p \notin F_1$ and $\{h_*, n \in N\} \subset F_1$. By (1), (i) and (iii), $z(H_1, F_1) > 0$ for some $H_1 \in \operatorname{Rci}(p)$. This contradicts $1/n > z(p, h_*) > z(H_1, F_1)$. So there exists $m \in N$ such that $\{h_1, z(p, h) < 1/m\} \subset H$. Therefore for each $n \geqslant m$, $y_* \in g(n, p) \subset g(m, p) \subset H$, and $z(H, F) \leqslant z(y_*, x_*) < 1/n$, a contradiction. Hence p is a cluster point of the sequence (x_*) . If the sequence (x_*) does not converge to p, then there exists a neighborhood W of p and a subsequence (x_*) of (x_*) such that $x_* \in W$ for each $k \in N$. Now $y_* \in g(n_*, p) \subset g(k, p)$, $x_* \in g(n_*, y_*) \subset g(k, y_*)$, and so p is a cluster point of the sequence (x_*) . But this is impossible, and so we conclude that (x_*) converges to p and X is a p-space.

A space (X, T) is a quasi-Nagata space (see [5]) if there exists a function $g: N \times X \rightarrow T$ such that $x \in g(n, x)$, and (y_*) has a cluster point whenever $x_* \in g(n, y_*)$ and (x_*) is a convergent sequence, wM-spaces are wN-spaces (see [4]), and wN-spaces are quasi-Nagata spaces (see [5]).

Corollary If an additive k-metric space is a quasi-Nagata space or a paracompact β -space, it is a metrizable space.

Proof A quasi-Nagata, γ -space is a metrizable space (see [5]), and a γ , β -space is a developable space (see [4]).

References

- [1] Ščepin, E. V., On topological products, groups and a new class of spaces more general than metric spaces, Soviet Math. Dokl., 17(1976), 152-155.
- [2] Dranišnikov, A.N., Simulton annihilator of families of closed sets, k-metrizable and stratifiable spaces, Soviet Math. Dokl., 19(1978), 1466—1469.
- [3] Isiwata, T., Metrization of additive k-metric spaces, Proc. Amer. Math. Soc., 100(1987), 164-168.
- [4] Hodel, R., Spaces defined by sequences of open covers which guarantee that certain sequences have cluster point, Duke Math. J., 29(1972), 253-263.
- [5] Martin, H. W., A note on the metrization of y-spaces, Proc. Amer. Math. Soc., 57(1976), 332-336.