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In this paper, cardinal invariants and R-factorizability in paratopological groups are stud-
ied. The main results are that (1) w(G) = ib(G∗) × χ(G) holds for every paratopologi-
cal group G; (2) every paratopological group G satisfies |G| � 2ib(G∗)ψ(G); (3) nw(G) =
Nag(G) × ψ(G) is valid for every completely regular paratopological group G; (4) a com-
pletely regular paratopological group G is R2-factorizable (resp. R3-factorizable) if and only
if it is a totally ω-narrow paratopological group with property ω-Q U and Hs(G) � ω (resp.
Ir(G) � ω); (5) if G is a completely regular R2-factorizable (resp. R3-factorizable) paratopo-
logical group and p : G → K an open homomorphism onto a paratopological group K such
that p−1(e) is countably compact, then K is R2-factorizable (resp. R3-factorizable), which
gives a partial answer to the question posed by M. Sanchis and M.G. Tkachenko (2010) [17].

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

A semigroup H which is also a topological space is said to be a topological semigroup provided that the operation in H is
jointly continuous. Following Bourbaki [5], a topological semigroup which is algebraically a group is called a paratopological
group. The importance of the latter concept was clarified in the articles of Banach [3], Numakura [12], Wallace [22], and
in the papers [6,7] by Ellis. Most recently, paratopological groups have become a field of intensive research. Among other
sources, the readers interested in this topic can consult [4,9–11,13,15].

In the theory of general topology, cardinal functions are very useful. Roughly speaking, cardinal functions extend such
important topological properties as countable base, separable, and first-countable to higher cardinality. Cardinal functions
then allow one to formulate, generalize, and prove results of the type just discussed in a systematic and elegant manner.
Thus, cardinal invariants in topological groups have been extensively investigated by many topologists. Many very useful re-
sults were established. For example, it is well known that w(G) = d(G)×χ(G) and w(G) = πw(G) hold for every topological
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group G [2]. Recently, cardinal invariants in paratopological groups have been studied in [1,13,14,21]. One of aims in this
paper is to establish certain new connections between cardinal invariants in paratopological groups.

In the theory of topological groups, M.G. Tkachenko introduced the class of R-factorizable groups as the topological
groups satisfying the condition that every real-valued continuous function is factorized through a continuous homomor-
phism onto a second-countable topological group. The class of R-factorizable groups is unexpectedly wide. For example, it
contains all Lindelöf groups and arbitrary (not necessarily closed) subgroups of Lindelöf Σ-groups. In particular, all precom-
pact groups and arbitrary subgroups of σ -compact groups are R-factorizable (see for instance [18,19]).

This motivated M. Sanchis and M.G. Tkachenko to introduce the class of R-factorizable paratopological groups as the
generalization of the class of R-factorizable groups in [17]. Recall that a paratopological group G is called Ri -factorizable,
for i = 1,2,3,3.5, if G is a Ti -space and for every continuous real-valued function f on G , one can find a continuous
homomorphism p : G → K onto a paratopological group K of countable weight satisfying the Ti -separation axiom and a
continuous real-valued function g on K such that f = g ◦ p. Similarly, the classes of Ri -factorizable paratopological groups
are unexpectedly wide.

In [17], a question on the open homomorphic images of R-factorizable paratopological groups was posed. To solve this
problem, the concept of property ω-Q U in paratopological groups is introduced in this paper. Recently, a decomposition
theory of R-factorizable topological groups was obtained by the concept of property ω-U in [23]. They established that
a topological group G is R-factorizable if and only if it is ω-narrow with property ω-U . Being analogous to the case of
R-factorizable topological groups, the characterizations of the classes of Ri-factorizable paratopological groups for i = 2,3
are established in this paper.

The paper is organized as follows. The aim of Section 2 is to establish certain new connections between cardinal in-
variants in paratopological groups. We show, among other things, that every totally τ -narrow paratopological group G
has inv(G) � τ , that w(G) = ib(G∗) × χ(G) holds for every paratopological group G and that nw(G) = Nag(G) × ψ(G) is
valid for every completely regular paratopological group G , which is a generalization of an earlier result in [2] saying that
nw(G) = Nag(G)×ψ(G) holds for every topological group G . In Section 3 we present a result saying that dense subgroups of
a topological product of regular paratopological groups which are Lindelöf Σ-spaces are R3-factorizable. Section 4 contains
a decomposition theorem of Ri -factorizable paratopological groups, which says that a completely regular paratopological
group G is R2-factorizable (resp. R3-factorizable) if and only if it is a totally ω-narrow paratopological group with property
ω-Q U and Hs(G) � ω (resp. Ir(G) � ω). In Section 5, we establish that if G is a completely regular R2-factorizable (resp.
R3-factorizable) paratopological group and p : G → K an open and continuous homomorphism onto a paratopological group
K with identity e such that p−1(e) is countably compact, then K is R2-factorizable (resp. R3-factorizable), which gives a
partial answer to the question posed by M. Sanchis and M.G. Tkachenko in [17]. In Section 6, some question are posed.

All spaces are assumed to be T1-separation axiom. T3 and T3.5 mean regularity and complete regularity, respectively.

2. Cardinal invariants in paratopological groups

In this section, we establish certain new connections between cardinal invariants in paratopological groups. Below c(X),
d(X), w(X), nw(X), l(X), and k(X) denote the cellularity, density, weight, network weight, Lindelöf degree, and compact-
covering number of a space X defined, respectively, as follows.

Cellularity: c(X) = sup{|U |: U is a disjoint family of open subsets of X} + ω.
Density: d(X) = min{|S|: S ⊂ X and S = X} + ω.
Weight: w(X) = min{|U |: U is a base for X} + ω.
Network weight: nw(X) = min{|U |: U is a network for X} + ω.
Lindelöf degree: l(X) = min{λ ∈ Card: for every open covering V of X there is a subfamily U ⊂ V such that |U | � λ and⋃U = X} + ω.
Compact-covering number: k(X) = min{λ ∈ Card: U is a family of compact subsets of X such that |U | � λ and⋃U = X} + ω.
For a paratopological group G with identity e we will consider the following cardinal functions:
Character: χ(G) = min{|B|: B is a neighborhood base at e of G} + ω.
Pseudocharacter: ψ(G) = min{|U |: U is a family of open subsets of G such that

⋂U = {e}} + ω.
For a paratopological group G with a topology τ , one defines the conjugate topology τ−1 on G by τ−1 = {U−1 | U ∈ τ }.

Then G ′ = (G, τ−1) is also a paratopological group, and the inversion x → x−1 is a homeomorphism of G onto G ′ . The
upper bound τ ∗ = τ ∨ τ−1 is a topological group topology on G , and we call G∗ = (G, τ ∗) the topological group associated
to G . Those notations are used throughout the article. Clearly, the associated topological group G∗ is Hausdorff for every
paratopological group G , the identity mapping i : G∗ → G is continuous, and H = H∗ holds for every topological group H .

Let P be a (topological) property. Recall that a paratopological group G is called totally P [16, Definition 3.1] if the
associated topological group G∗ has the property P .

The following is a general form of [16, Corollary 3.3] and is quite simple, but is of much importance, since it relates the
properties of a paratopological group G to those of the associated topological group G∗ .

Proposition 2.1. Let P be a topological property which is finitely productive and hereditary with respect to closed subspaces. If a
paratopological group G has the property P , so does G∗ .
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Proof. Define a function f : G × G ′ → G as follows: f (x, y) 	→ xy−1. One can easily verify that the function f is continuous.
Since G is a T1-paratopological group, the diagonal 
 = {(x, x): x ∈ G} = f −1(e) is closed in G × G ′ , where e is the identity
in G . By [17, Lemma 3.2], 
 is a Hausdorff topological group topologically isomorphic to the topological group G∗ . Therefore,
the statement is obvious, since the property P is finitely productive and hereditary with respect to closed subspaces. �

According to Proposition 2.1 one can easily obtain the following.

Corollary 2.2. Let P be a topological property which is finitely productive, hereditary with respect to closed subspaces and preserved
by continuous mappings. Then a paratopological group G has the property P if and only if so does G∗ .

Let G be a paratopological group. We say that the invariance number of G is less than or equal to τ , in symbols, inv(G) � τ
if for every open neighborhood U of identity e in G , there exists a family γ of open neighborhoods of e in G with |γ | � τ
such that for each x ∈ G one can find V ∈ γ satisfying xV x−1 ⊂ U . A paratopological group G is called τ -balanced if
inv(G) � τ .

Recall that for a Hausdorff paratopological group G with identity e the Hausdorff number [20] of G , denoted by Hs(G),
is the minimum cardinal number κ such that for every open neighborhood U of e in G , there exists a family γ of open
neighborhoods of e such that

⋂
V ∈γ V V −1 ⊂ U and |γ | � κ . Similarly, the index of regularity [20] Ir(G) of a regular paratopo-

logical group G with identity e, is the minimum cardinal number κ such that for every open neighborhood U of e in G ,
one can find a open neighborhood V of e and a family γ of open neighborhoods of e in G such that

⋂
W ∈γ V W −1 ⊂ U and

|γ | � κ . Clearly, every topological group G has Hs(G) = 1 and Ir(G) = 1, and every first-countable Hausdorff (resp. regular)
paratopological group G has Hs(G) � ω (resp. Ir(G) � ω).

From the proofs of [20, Theorems 2.7 and 3.6] one can obtain the following which plays an important role as well in our
paper.

Lemma 2.3. Let G be an ω-balanced paratopological group with Hs(G) � ω (resp. Ir(G) � ω). Then for every open neighborhood U
of the identity in G, there exists a continuous homomorphism π of G onto a Hausdorff (resp. regular) first-countable paratopological
group H such that π−1(V ) ⊂ U for some open neighborhood V of the identity in H.

Let τ be an infinite cardinal number and G a paratopological group. G is called τ -narrow if, for every neighborhood U of
the identity in G , there exists a subset K ⊂ G with |K | � τ such that K U = U K = G . An important cardinal function is the
index of narrowness of G denoted by ib(G). ib(G) is defined as the minimal cardinal number τ � ω such that G is τ -narrow.

Theorem 2.4. Let G be an ω-balanced paratopological group with Hs(G) � ω and suppose that every continuous homomorphic image
H of G with χ(H) � ω is τ -narrow. Then G is τ -narrow.

Proof. Let U be an open neighborhood of the identity in G . Take an open neighborhood V of the identity in G such
that V 2 ⊂ U . Then, by Lemma 2.3, there exists a continuous homomorphism π of G onto a Hausdorff first-countable
paratopological group H such that π−1(W ) ⊂ V for some open neighborhood W of identity e in H . Thus H is τ -narrow
by the hypothesis. For the open neighborhood W , choose a set K ⊂ H such that |K | � τ and K W = W K = H . Let F be any
subset of G such that |F | � τ and π(F ) = K . We claim that U F = F U = G . Indeed, take an arbitrary element x ∈ G . Then
π(x) ∈ bW for some b ∈ K . Choose an element a ∈ F such that π(a) = b. Clearly, π(x) ∈ bW = π(a)W ⊂ π(aV ), whence it
follows that

x ∈ π−1(π(aV )
) = aV π−1(e) ⊂ aV π−1(W ) ⊂ aV V ⊂ aU ⊂ F U .

This implies that F U = G . Similarly, one can easily prove that U F = G , so G is τ -narrow. �
Clearly, every Abelian topological group is ω-balanced. Thus we have the following.

Corollary 2.5. ([2, Proposition 5.1.13]) Let G be an Abelian topological group and suppose that every continuous homomorphic image
H of G with χ(H) � ω is τ -narrow. Then the topological group G is τ -narrow.

Theorem 2.6. Every totally τ -narrow paratopological group is τ -balanced.

Proof. Let G be a totally τ -narrow paratopological group with identity e and U an open neighborhood of e in G . Choose an
open neighborhood V of e in G such that V 3 ⊂ U . Since the topological group G∗ associated to G is τ -narrow, and the set
O = V ∩ V −1 is an open neighborhood of e in G∗ , there exists a subset C ⊂ G∗ such that C O = O C = G∗ and |C | � τ . Clearly,
O ⊂ V and O ⊂ V −1. Since the multiplication in G is continuous, we can find, for every x ∈ C , an open neighborhood W x

of e in G such that xW xx−1 ⊂ V . Then the family γ = {W x: x ∈ C} is subordinated to U .



Author's personal copy

982 L.-H. Xie, S. Lin / Topology and its Applications 160 (2013) 979–990

Indeed, for an arbitrary y ∈ G , there exists x ∈ C such that y ∈ O x. We have, therefore, that

yW x y−1 ⊂ O xW xx−1 O −1 ⊂ V
(
xW xx−1)V ⊂ V 3 ⊂ U .

This proves that G has inv(G) � τ , that is, G is τ -balanced. �
Corollary 2.7. ([16, Proposition 3.8]) Every totally ω-narrow paratopological group G is ω-balanced, that is, inv(G) � ω.

A subset B of a paratopological group G is called τ -narrow in G if, for every open neighborhood U of the identity in
G , there exists a subset F ⊂ G with |F | � τ such that B ⊂ F U ∩ U F . Clearly, G is τ -narrow iff G is τ -narrow in itself, and
every subset of a τ -narrow paratopological group is τ -narrow in this group.

Theorem 2.8. A subset B of a paratopological group G is τ -narrow in each of the following cases:

(1) l(B) � τ ;
(2) c(B∗) � τ , where the space B∗ is considered subset B with the topology induced from G∗ .

Proof. For case (1), the result is almost obvious. Indeed, if U is an open neighborhood of the identity in G , then {xU : x ∈ G}
and {U x: x ∈ G} are two open coverings of G . Since l(B) � τ , there are two subsets C1, C2 of G such that |Ci | � τ (i = 1,2)
and both the families {xU : x ∈ C1} and {U x: x ∈ C2} cover B or, equivalently, B ⊂ C1U ∩ U C2. Hence, B is τ -narrow.

For case (2), take an open set U of the identity in G . Then U is also an open set in G∗ . Since c(B∗) � τ , there exits a
subset C ⊂ G∗ such that B ⊂ C U ∩ U C and |C | � τ by [2, Proposition 5.1.3], which implies that B is also τ -narrow. �
Corollary 2.9. Every paratopological group G satisfies the inequalities ib(G) � l(G) and ib(G) � c(G∗).

In what follows we focus in new connections between cardinal invariants in paratopological groups.

Theorem 2.10. w(G) = ib(G∗) × χ(G) holds for every paratopological group G.

Proof. Clearly, χ(G∗) � χ(G) × χ(G) = χ(G) by Proposition 2.1. Since w(G∗) = ib(G∗) × χ(G∗) [2, Proposition 5.2.3], we
have nw(G) � w(G∗) � ib(G∗) × χ(G) because of G as a continuous image of G∗ . Suppose that nw(G) = δ, ib(G∗) = κ , and
χ(G) = γ . Take a base V = {Vα: α ∈ γ } at the identity of G and a network U = {Uβ : β ∈ δ} for G . We claim that the
family {Uβ Vα: (β,α) ∈ δ × γ } is a base of G . It will imply that w(G) � δ × γ = nw(G) × χ(G) � ib(G∗) × χ(G) × χ(G) =
ib(G∗) × χ(G).

In fact, take any open set U ⊂ G and any point x ∈ U . By the joint continuity of G , one can find two open sets Vα and
W in G such that Vα ∈ V , x ∈ W and W Vα ⊂ U . Since U is a network, there exists Uβ ∈ U such that x ∈ Uβ ⊂ W . Hence,
x ∈ Uβ Vα ⊂ W Vα ⊂ U .

Now we shall prove ib(G∗) × χ(G) � w(G). Clearly, χ(G) � w(G). It is enough to show that ib(G∗) � w(G). Indeed, by
Proposition 2.1 and Corollary 2.9, we have ib(G∗) � l(G∗) � w(G∗) � w(G) × w(G) = w(G). �
Remark 2.11. The “ib(G∗)” cannot be replaced by “ib(G)” in Theorem 2.10, that is, w(G) = ib(G) × χ(G) need not hold for
every paratopological group G . Indeed, the Sorgenfrey line S is a first-countable and Lindelöf paratopological group, thus,
by Corollary 2.9, ib(S) � ω and χ(S) � ω. Clearly, w(S) > ω = ω × ω � ib(S) × χ(S).

According to Theorem 2.10, one can easily obtain Corollaries 2.12 and 2.13.

Corollary 2.12. w(G) = χ(G) holds for every totally ω-narrow paratopological group G, i.e. ib(G∗) � ω.

Corollary 2.13. ([16, Proposition 3.5]) Every first-countable totally ω-narrow paratopological group has a countable base.

Corollary 2.14. w(G) = nw(G) × χ(G) holds for every paratopological group G.

Proof. Clearly, nw(G) × χ(G) � w(G). From Proposition 2.1 and Corollary 2.9 it follows that ib(G∗) � l(G∗) � nw(G∗) �
nw(G). Thus w(G) = ib(G∗) × χ(G) � nw(G) × χ(G) by Theorem 2.10. �
Corollary 2.15. ([1, Proposition 2.13]) Every first-countable paratopological group with a countable network has a countable base.

Proof. The statement directly follows from Corollary 2.14. �
Since every completely regular R1-factorizable paratopological group is totally ω-narrow [17, Proposition 3.5], we have

the following.
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Corollary 2.16. ([17, Proposition 3.4]) Every R1-factorizable and completely regular paratopological group G satisfies the equality
w(G) = χ(G).

Corollary 2.17. Every paratopological group G satisfies:

(1) w(G) = d(G∗) × χ(G);
(2) w(G) = c(G∗) × χ(G);
(3) w(G) = l(G∗) × χ(G);
(4) w(G) = w(G∗) × χ(G);
(5) w(G) � k(G∗) × χ(G) � k(G) × χ(G).

Proof. (1) It is well known that ib(H) � c(H) � d(H) holds for every topological group H . Thus, from Theorem 2.10 it
follows that w(G) = ib(G∗) × χ(G) � d(G∗) × χ(G) for the paratopological group G . Clearly, χ(G) � w(G). According to
Proposition 2.1, one can easily obtain that w(G∗) � w(G) × w(G) = w(G), which implies that d(G∗) � w(G∗) � w(G). Thus,
d(G∗) × χ(G) � w(G) × w(G) = w(G).

(2) By Corollary 2.9, ib(G∗) � c(G∗), and from Theorem 2.10 it follows that w(G) = ib(G∗)×χ(G) � c(G∗)×χ(G). Clearly,
χ(G) � w(G) and c(G∗) � w(G∗) � w(G) × w(G) = w(G) by Proposition 2.1, thus c(G∗) × χ(G) � w(G) × w(G) = w(G).

(3) Note that ib(G) � l(G) according to Corollary 2.9. From Theorem 2.10 it follows that w(G) = ib(G∗) × χ(G) � l(G∗) ×
χ(G). Clearly, l(G∗) � w(G∗) � w(G) × w(G) = w(G) by Proposition 2.1 and χ(G) � w(G). Thus, l(G∗) × χ(G) � w(G) ×
w(G) = w(G).

(4) Note that w(G∗) � w(G) × w(G) = w(G) by Proposition 2.1. It follows that w(G∗) × χ(G) � w(G) × w(G) = w(G).
Clearly, ib(G∗) � w(G∗). From Theorem 2.10 it follows that w(G) = ib(G∗) × χ(G) � w(G∗) × χ(G).

(5) According to Proposition 2.1 one can easily obtain that k(G∗) � k(G) × k(G) = k(G). Since ib(H) � l(H) � k(H) holds
for any topological group H , we have ib(G∗) � k(G∗) � k(G). Thus, w(G) = ib(G∗) ×χ(G) � k(G∗) ×χ(G) � k(G) × χ(G) by
Theorem 2.10. �
Remark 2.18. The d(G∗), c(G∗), and l(G∗) in Corollary 2.17 cannot be replaced by d(G), c(G) and l(G), respectively. Indeed,
let S be the Sorgenfrey line which is a paratopological group. Clearly, c(S) = d(S) = l(G) = ω and χ(S) = ω. However,
w(S) > ω = d(S) × χ(S) = l(S) × χ(S) = c(S) × χ(S).

Corollary 2.19. w(G) = χ(G) holds for every σ -compact paratopological group G.

Proof. Clearly, w(G) � χ(G). The statement directly follows from (5) of Corollary 2.17 because of k(G) � ω. �
Theorem 2.20. Every paratopological group G satisfies |G| � 2ib(G∗)ψ(G) . Therefore, |G| � 2l(G∗)ψ(G) , and |G| � 2c(G∗)ψ(G) .

Proof. According to Proposition 2.1, one can easily obtain ψ(G∗) � ψ(G) × ψ(G) = ψ(G). From [2, Theorem 5.2.15], |G∗| �
2ib(G∗)ψ(G∗) , it follows that |G| = |G∗| � 2ib(G∗)ψ(G∗) � 2ib(G∗)ψ(G) . By Corollary 2.9, the rest of the theorem is immediate. �
Corollary 2.21. Every totally ω-narrow paratopological group G satisfies |G| � 2ψ(G) .

Theorem 2.22. Let G be a paratopological group. Then nw(G) � k(G) × ψ(G).

Proof. According to Proposition 2.1 one can easily obtain k(G∗) � k(G) × k(G) = k(G) and ψ(G∗) � ψ(G) × ψ(G) = ψ(G).
From [2, Proposition 5.2.17], nw(G∗) � k(G∗) × ψ(G∗), it follows that nw(G) � nw(G∗) � k(G∗) × ψ(G∗) � k(G) × ψ(G)

because of G as a continuous image of G∗ . �
Corollary 2.23. nw(G) = ψ(G) holds for every Hausdorff σ -compact paratopological group G.

Proof. According to Theorem 2.22, it is enough to show ψ(G) � nw(G). Take a network {Vα | α ∈ γ } in G such that γ =
nw(G). Since G is Hausdorff, for any point y ∈ G \ {e} where e is the identity in G , one can find α ∈ γ such that y ∈ Vα ⊂
Vα ⊂ G \ {e}. It implies that ψ(G) � nw(G) by the homogeneity of G . �

Suppose that X is a subset of Y and that γ is a family of subsets of Y . We say that γ separates X from Y \ X if for every
x ∈ X and every y ∈ Y \ X , there exists F ∈ γ such that x ∈ F and y /∈ F .

Let β X be the Čech–Stone compactification of a Tychonoff space X and F the family of all closed subsets of β X . We
recall that the Nagami number [2], denoted by Nag(X), of X as follows:

Nag(X) = min
{|P|: P ⊂ F and P separates X from β X \ X

} + ω.
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Theorem 2.24. Let G be a completely regular paratopological group. Then nw(G) = Nag(G) × ψ(G).

Proof. It is well known that Nag(X) � nw(X) [2, Proposition 5.3.3] and ψ(X) � nw(X) for any completely regular space
X . Thus, nw(G) = nw(G) × nw(G) � Nag(G) × ψ(G). It remains to show nw(G) � Nag(G) × ψ(G). Indeed, it is well known
that Nag(Y ) � Nag(X) holds for each closed subspace Y of a completely regular space X [2, Corollary 5.3.2]. Thus, by
[2, Proposition 5.3.9], Nag(G∗) � Nag(G)×Nag(G) = Nag(G). According to Proposition 2.1 one can easily obtain that ψ(G∗) �
ψ(G) × ψ(G) = ψ(G). Thus, by [2, Corollary 5.3.25], nw(G∗) = Nag(G∗) × ψ(G∗), so nw(G) � nw(G∗) = Nag(G∗) × ψ(G∗) �
Nag(G) × ψ(G) because of G as a continuous image of G∗ . �

Since every regular paratopological group G which is a Lindelöf Σ-space has Nag(G) � ω [2], Theorem 2.24 implies the
following.

Corollary 2.25. nw(G) = ψ(G) holds for every regular paratopological group G which is a Lindelöf Σ-space.

3. Lindelöf Σ-paratopological groups

In this section we establish that every dense subgroup of a topological product of regular paratopological groups which
are Lindelöf Σ-spaces are R3-factorizable. Firstly, let us give some auxiliary facts.

Proposition 3.1. Let G be a paratopological group satisfying Ti -separation axiom with the property that for every continuous function
f : G → R, there exist a continuous homomorphism π : G → H onto an Ri -factorizable paratopological group H and a continuous
function h : H → R such that f = h ◦ π . Then G is Ri -factorizable (i = 1,2,3,3.5).

Proof. Take any continuous function f : G → R. By the assumptions, we can find a continuous homomorphism π : G → H
onto an Ri-factorizable paratopological group H and a continuous function h : H → R such that f = h ◦ π . By the Ri-
factorizability of H , there are a continuous homomorphism p : H → K onto a second-countable paratopological group K
with Ti -separation axiom and a continuous real-valued function g on K such that h = g ◦ p. Clearly, the continuous homo-
morphism ϕ = p ◦ π of G onto K satisfies f = h ◦ ϕ . �

Recall that a space X is called ω-cellular [2] if every family γ consisting of Gδ-sets in X contains a subfamily γ0 such
that

⋃
γ = ⋃

γ0 and |γ0| � ω.

Lemma 3.2. ([17, Theorem 3.13]) Let G be a regular paratopological group such that G is a Lindelöf Σ-space. Then every subgroup of
G is R3-factorizable.

Lemma 3.3. ([2, Corollary 5.3.31]) The product of any family of Lindelöf Σ-groups is an ω-cellular space.

Proposition 3.4. The topological product of any family of paratopological groups which are Lindelöf Σ-spaces and satisfy T3-
separation axiom is an ω-cellular space.

Proof. Let G = ∏
α∈Λ Gα be the topological product of a family of paratopological groups {Gα: α ∈ Λ}, where the paratopo-

logical group Gα with T3-separation axiom is a Lindelöf Σ-space for each α ∈ Λ. According to Proposition 2.1, we can obtain
that the topological group G∗

α is a Lindelöf Σ-space for each α ∈ Λ. Thus, by Lemma 3.3, G∗ = ∏
α∈Λ G∗

α is an ω-cellular
space. Consider the identity mapping i : G∗ = ∏

α∈Λ G∗
α → G . Clearly, i is a continuous mapping. Thus G is an ω-cellular

space as a continuous image of the ω-cellular space G∗ . �
Lemma 3.5. ([2, Theorem 1.7.7]) Let X = ∏

α∈Λ Xα be an ω-cellular space and suppose that S is a dense subset of X . Then, for every
continuous mapping f : S → Y to a regular first-countable space Y , there exist a countable set K ⊂ Λ and a continuous mapping
h : pK (S) → Y such that f = h ◦ pK � S, where pK : X → ∏

α∈K Xα is the projection.

Theorem 3.6. Dense subgroups of a topological product of regular paratopological groups which are Lindelöf Σ-spaces are R3-
factorizable.

Proof. Let G = ∏
i∈I Gi be the topological product of regular paratopological groups {Gi: i ∈ I} which are Lindelöf Σ-spaces,

H a dense subgroup of G and f : H → R a continuous function. It follows from Proposition 3.4 that the space G is ω-cellular.
By Lemma 3.5, we can find a countable set K ⊂ I and a continuous function h : pK (H) → Y such that f = h ◦ pK � H , where
pK : G → G K = ∏

α∈K Gα is the projection. Since Lindelöf Σ-spaces are countably productive, H K = pK (H) is a subgroup
of the paratopological group G K which is a regular Lindelöf Σ-space. Thus, H K is R3-factorizable by Lemma 3.2. Hence
Proposition 3.1 implies that H is also R3-factorizable. �



Author's personal copy

L.-H. Xie, S. Lin / Topology and its Applications 160 (2013) 979–990 985

It is well known that every regular space with a countable network is a Lindelöf Σ-space. Thus we have the following
by Theorem 3.6.

Corollary 3.7. Dense subgroups of a topological product of regular paratopological groups which have a countable network are R3-
factorizable.

4. ω-Quasi-uniform continuity in paratopological groups

In this section, some decomposition theorems of R-factorizable paratopological groups are obtained. Firstly, some simple
properties of ω-quasi-uniformly continuous real-valued functions on paratopological groups are discussed. Those results will
be used in Section 5.

A quasi-uniformity on a set X is a filter U on X × X such that (a) each member of U is a reflexive relation on X , and (b)
if U ∈ U then V ◦ V ⊂ U for some V ∈ U . The pair (X,U) is called a quasi-uniform space.

Let (X,U) be a quasi-uniform space. The topology τ (U) = {H ⊂ X: for each x ∈ H there is U ∈ U with U (x) ⊂ H} is
called the topology induced by U . (Here U (x) = {y ∈ X: (x, y) ∈ U }.) A topological space (X, τ ) admits U provided that τ is
the topology induced by U .

Let (G, τ ) be a paratopological group. Denote by N (G) the family of all open neighborhoods at the identity in G
throughout this section. Following [8], there are two natural quasi-uniformities on G . For each U ∈ N (G) put U L = {(x, y) ∈
G × G: x−1 y ∈ U }. It follows that {U L: U ∈ N (G)} is a base for the left quasi-uniformity UL on G . Moreover for each
U ∈ N (G) put U R = {(x, y) ∈ G × G: yx−1 ∈ U }. Then {U R : U ∈ N (G)} is also a base for the right quasi-uniformity UR
on G . Clearly, the paratopological group (G, τ ) admits UL and UR .

A real-valued function f on a paratopological group G is called left quasi-uniformly continuous (resp. right quasi-uniformly
continuous) if for any ε > 0, there exists V ∈ N (G) such that | f (y) − f (x)| < ε whenever x−1 y ∈ V (resp. yx−1 ∈ V ) for all
x ∈ G . We say that a real-valued function f on G is quasi-uniformly continuous if f is both left quasi-uniformly continuous
and right quasi-uniformly continuous.

In [23], as the generalization of uniformly continuous functions on topological groups, ω-uniformly continuous functions
on topological groups were defined and discussed. Therefore, the notion of ω-quasi-uniform continuity of mappings is
naturally defined in the classes of paratopological groups what follows.

Definition 4.1. A real-valued function f on a paratopological group G is left (resp. right) ω-quasi-uniformly continuous
if, for every ε > 0, there exists a countable family U ⊂ N (G) such that for every x ∈ G , there exists U ∈ U such that
| f (x) − f (y)| < ε whenever x−1 y ∈ U (resp. whenever yx−1 ∈ U ).

Definition 4.2. A real-valued function f on a paratopological group is ω-quasi-uniformly continuous if f is both left and right
ω-quasi-uniformly continuous.

Remark 4.3. (1) According to Definition 4.1, one can easily obtain that every continuous real-valued function defined on a
first-countable paratopological group is ω-quasi-uniformly continuous.

(2) It is clear that every left (resp. right) quasi-uniformly continuous function defined on a paratopological group is left
(resp. right) ω-quasi-uniformly continuous;

(3) It is clear that quasi-uniformly continuous ⇒ ω-quasi-uniformly continuous, but the converse does not hold. In
fact, the Sorgenfrey line S is a first-countable paratopological group, so every continuous real-valued f on S is ω-quasi-
uniformly continuous according to (1). However, there exists some continuous real-valued function f on S which is not
quasi-uniformly continuous.

The following proposition gives a characterization of left or right ω-quasi-uniformly continuous functions on a paratopo-
logical group. The proof is easy, so we omit it.

Proposition 4.4. Let f be a real-valued function defined on a paratopological group G. The following are equivalent.

(1) f is left (resp. right) ω-quasi-uniformly continuous;
(2) there exists a countable family U ⊂ N (G) satisfying that for every point x ∈ G and ε > 0, there exists U ∈ U such that

| f (x) − f (y)| < ε whenever x−1 y ∈ U (resp. yx−1 ∈ U ).

Proposition 4.5. A real-valued function defined on an ω-balanced paratopological group is left ω-quasi-uniformly continuous if and
only if it is right ω-quasi-uniformly continuous.

Proof. Let G be an ω-balanced paratopological group.
Necessity. Suppose that a real-valued function f on G is left ω-quasi-uniformly continuous. According to Definition 4.1,

for every ε > 0, there exists a countable family γ ⊂ N (G) such that for every x ∈ G , there exists U ∈ γ such that
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| f (x) − f (y)| < ε whenever x−1 y ∈ U . Since G is ω-balanced, for every U ∈ γ one can find a countable family δU ⊂ N (G)

such that for each x ∈ G , there exists V ∈ δU with xV x−1 ⊂ U . Put δ = ⋃
U∈γ δU . Take any x ∈ G . According to the property

of δU , there exists V ∈ δU ⊂ δ such that x−1 V x ⊂ U . Thus | f (x) − f (vx)| = | f (x) − f (xu)| < ε for all v ∈ V , which implies
that f is right ω-quasi-uniformly continuous.

Sufficiency. Similar to the necessity. �
Corollary 4.6. Every continuous (resp. bounded and continuous) real-valued function defined on an ω-balanced paratopological group
is left ω-quasi-uniformly continuous if and only if every continuous (resp. bounded and continuous) real-valued function on it is right
ω-quasi-uniformly continuous.

Similar to the concepts of property ω-U and property Bω-U [23] in topological groups, we have the following definition
in paratopological groups, which plays an important role in our decomposition theorems.

Definition 4.7. A paratopological group G has property ω-Q U (resp. property Bω-Q U ) if each continuous (resp. bounded
and continuous) real-valued function on G is ω-quasi-uniformly continuous.

Remark 4.8. (1) The (1) of Remark 4.3 implies that every first-countable paratopological group has property ω-Q U .
(2) It is well known that every totally precompact paratopological group is a precompact topological group [1, Theorem

1.8] and that every precompact topological group has property ω-U [23, Corollary 4.12], thus, every totally precompact
paratopological group has property ω-Q U .

It is well known that a topological group has property Bω-U if and only if it has property ω-U [23, Theorem 4.3]. In the
same way in the proof of [23, Theorem 4.3] one can easily obtain the following.

Theorem 4.9. A paratopological group has property Bω-Q U if and only if it has property ω-Q U .

The following theorem was proved for topological groups in [23].

Theorem 4.10. Every Lindelöf paratopological group has property ω-Q U .

Proof. Let G be a Lindelöf paratopological group and f : G → R a continuous function. Take any ε > 0. Then one can find
two families V = {V i: i ∈ ω} and U = {U j: j ∈ ω}, and two subsets A = {xi: i ∈ ω} and B = {y j: j ∈ ω} of G such that:

(a) V i and U j are open neighborhoods at the identity of G for each i, j ∈ ω;
(b) f (xi V 2

i ) ⊂ ( f (xi) − ε
2 , f (xi) + ε

2 ) and f (U 2
j y j) ⊂ ( f (y j) − ε

2 , f (y j) + ε
2 ) for each i, j ∈ ω;

(c) G = ⋃
i∈ω xi V i = ⋃

j∈ω U j y j .

Indeed, since G is a paratopological group, for each x ∈ G , one can find an open neighborhood V x at the identity of G such
that f (xV 2

x ) ⊂ ( f (x) − ε
2 , f (x) + ε

2 ). Clearly, G = ⋃
x∈G xV x . Since G is Lindelöf, one can find a countable subset A ⊂ G such

that G = ⋃
x∈A xV x . Put V = {V x: x ∈ A}. It is obvious that A and V satisfy (a)–(c). Similarly, one can find B and U .

Put W = V ∪ U . We claim that for each x ∈ G , there exists V ∈ W such that | f (x) − f (y)| < ε whenever x−1 y ∈ V . It
implies that the function f is left ω-quasi-uniformly continuous by Proposition 4.4. In fact, by (c), there exists i ∈ ω such
that x ∈ xi V i . Thus, f (xV i) ⊂ f (xi V 2

i ) ⊂ ( f (xi) − ε
2 , f (xi) + ε

2 ), which implies that | f (x) − f (y)| < ε whenever x−1 y ∈ V i .
Similarly, one can prove that f is right ω-quasi-uniformly continuous by Proposition 4.4. Thus, the Lindelöf paratopolog-

ical group G has property ω-Q U . �
Corollary 4.11. Every subgroup of a paratopological group with a countable network has property ω-Q U , in particular, so does every
subgroup of a second-countable paratopological group.

Since it is easy to prove that the continuous homomorphic image of a totally ω-narrow paratopological group is totally
ω-narrow, from Lemma 2.3 and Corollary 2.13 it follows the following result which plays an important role in the proof of
Lemma 4.13.

Lemma 4.12. Let G be a totally ω-narrow paratopological group with Hs(G) � ω (resp. Ir(G) � ω). Then for every open neighborhood
U of the identity in G, there exists a continuous homomorphism π of G onto a Hausdorff (resp. regular) second-countable paratopo-
logical group H such that π−1(V ) ⊂ U for some open neighborhood V of the identity in H.

Lemma 4.13. Let G be a totally ω-narrow paratopological group with Hs(G) � ω (resp. Ir(G) � ω) and f : G → R either left or right
ω-quasi-uniformly continuous. Then there exist a continuous homomorphism π : G → K onto a Hausdorff (resp. regular) second-
countable paratopological group K and a continuous function p : K → R such that f = p ◦ π .
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Proof. Suppose that f : G → R is left ω-quasi-uniformly continuous. Thus, by Proposition 4.4, there exists a countable
family U of open neighborhoods at the identity in G such that for any ε > 0 and any point x ∈ G , there exists U ∈ U
satisfying | f (x) − f (y)| < ε whenever x−1 y ∈ U . According to Lemma 4.12, one can find a continuous homomorphism
πU : G → HU onto a Hausdorff (resp. regular) second-countable paratopological group HU such that π−1

U (V ) ⊂ U for some
open neighborhood V of the identity in HU . Define π = 
U∈UπU as the diagonal product of the family {πU : U ∈ U}.

It is obvious that π(G) is a Hausdorff (resp. regular) second-countable paratopological group, since
∏

U∈U HU is Haus-
dorff (resp. regular) and second-countable.

Claim. f (g1) = f (g2) for all g1, g2 ∈ G satisfying π(g1) = π(g2).

Indeed, assume to the contrary, and choose g1, g2 ∈ G and ε > 0 such that

π(g1) = π(g2) and f (g1) /∈ (
f (g2) − ε, f (g2) + ε

)
.

By the property of U , for g2 and ε there exists U ∈ U such that | f (g2) − f (g2u)| < ε for all u ∈ U , which is equiva-
lent to f (g2U ) ⊂ ( f (g2) − ε, f (g2) + ε). Therefore, there exists an open neighborhood V of the identity in HU such that
π−1

U (V ) ⊂ U . Take an open neighborhood W of the identity in HU such that W 2 ⊂ V . Put g = πU (g1), then g = πU (g2) by
π(g1) = π(g2) and

g1 ∈ π−1
U (gW ) = π−1

U (g)π−1
U (W )

= g2π
−1
U (e)π−1

U (W ) ⊂ g2π
−1
U (W )π−1

U (W )

= g2π
−1
U

(
W 2) ⊂ g2π

−1(V ) ⊂ g2U ,

which implies that

f (g1) ∈ f (g2U ) ⊂ (
f (g2) − ε, f (g2) + ε

)
.

This contradiction completes the proof of Claim.
From Claim it follows that there is a function p : π(G) → R such that f = p ◦π . It remains to prove that p is continuous.
Take any ε > 0, h ∈ π(G) and choose a point g ∈ G such that h = π(g). According to f = p ◦ π and the property of U

there exists U ∈ U such that

f (gU ) ⊂ (
f (g) − ε, f (g) + ε

) = (
p(h) − ε, p(h) + ε

)
.

By the property of πU above, there is an open neighborhood V containing the identity in HU such that π−1
U (V ) ⊂ U . Choose

an open neighborhood W of the identity in HU such that W 2 ⊂ V . Put

O = π(G) ∩
(

W ×
∏

U ′∈U\{U }
HU ′

)
.

We claim that p(hO ) ⊂ (p(h) − ε, p(h) + ε), which implies that p is continuous.
In fact, since hU = πU (g),

p(hO ) ⊂ f
(
π−1(hO )

)

= f

(
π−1

(
π(G) ∩

(
hU W ×

∏
U ′∈U\{U }

HU ′
)))

= f
(
π−1

U (hU W )
) ⊂ f

(
gπ−1

U (V )
) ⊂ f (gU )

⊂ (
f (g) − ε, f (g) + ε

) = (
p(h) − ε, p(h) + ε

)
.

This completes the proof when f is left ω-quasi-uniformly continuous.
Similarly, one can prove the result when f is right ω-quasi-uniformly continuous. �

Lemma 4.14. Hs(G) � ω (resp. Ir(G) � ω) holds for every completely regular and R2-factorizable (resp. R3-factorizable) paratopo-
logical group G.

Proof. Let μ = { fα: α ∈ γ } be all continuous real-valued functions on G . Define f = 
α∈γ fα as the diagonal product of
the family μ. Since G is completely regular, f : G → ∏

α∈γ Rα is an embedding mapping. By the R2-factorizability (resp.
R3-factorizability) of G , there exist a continuous homomorphism pα : G → Kα onto a Hausdorff (resp. regular) second-
countable paratopological group Kα and a continuous function hα : Kα → Rα such that fα = hα ◦ pα for each α ∈ γ . Define
p = 
α∈γ pα as the diagonal product of the family {pα: α ∈ γ } and h = 
α∈γ hα as the diagonal product of the family
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{hα: α ∈ γ }. Clearly, f = h ◦ p. Since f is an embedding mapping and h, p are continuous, p : G → ∏
α∈γ Kα is also an

embedding mapping. By [20, Propositions 2.1, 2.2 and 2.3] (resp. [20, Propositions 3.1, 3.2 and 3.3]), one can easily obtain
that Hs(G) � ω (resp. Ir(G) � ω). �

The following is one of main results in this section.

Theorem 4.15. A completely regular paratopological group G is R2-factorizable (resp. R3-factorizable) if and only if it is a totally
ω-narrow paratopological group with property ω-Q U and Hs(G) � ω (resp. Ir(G) � ω).

Proof. The sufficiency is obtained by Lemma 4.13. Conversely, suppose that G is a completely regular and R2-factorizable
(resp. R3-factorizable) paratopological group. Then Hs(G) � ω (resp. Ir(G) � ω) holds by Lemma 4.14. Since every completely
regular R1-factorizable paratopological group is totally ω-narrow [17, Proposition 3.5], so is G (because of Ri-factorizable ⇒
R j-factorizable for 1 � j < i � 3.5). Thus, it is enough to show that G has property ω-Q U .

Let f : G → R be a continuous function. Since G is R2-factorizable (resp. R3-factorizable), there exist a continuous
homomorphism π : G → K onto a Hausdorff (resp. regular) second-countable paratopological group K and a continuous
function p : K → R such that f = p ◦ π . Let B be a countable local base of the identity in K . Put U f = {π−1(U ): U ∈ B}.
By (1) of Remark 4.8, one can easily verify that U f is a countable family of open neighborhoods of the identity in G and
satisfies that for every point x ∈ G and ε > 0, there exist U1, U2 ∈ U f such that | f (x) − f (y)| < ε and | f (x) − f (y)| < ε

whenever x−1 y ∈ U1 and yx−1 ∈ U2, respectively. It implies that the function f is ω-quasi-uniformly continuous by Propo-
sition 4.4. �
Remark 4.16. From the proof of Theorem 4.15 it is not difficult to obtain that every Ri -factorizable paratopological group
has property ω-Q U (for i = 1,2,3,3.5).

Since Ir(G) � ω holds for every regular Lindelöf paratopological group G [20, Proposition 3.5], from Theorems 4.10
and 4.15 it follows Corollary 4.17.

Corollary 4.17. ([17, Theorem 3.6]) Every Lindelöf totally ω-narrow regular paratopological group is R3-factorizable.

Since every subgroup of a Hausdorff σ -compact paratopological group is R2-factorizable [17, Proposition 3.16], from
Lemma 3.2, Theorem 3.6 and Remark 4.16 it follows Corollaries 4.18 and 4.19.

Corollary 4.18. Every subgroup of a paratopological group G satisfying one of the following conditions has property ω-Q U .

(1) G is a Hausdorff σ -compact space;
(2) G is a regular Lindelöf Σ-space.

Corollary 4.19. Every dense subgroup of a topological product of regular paratopological groups which are Lindelöf Σ-spaces has
property ω-Q U .

Theorem 4.15 implies Theorem 4.20.

Theorem 4.20. A totally ω-narrow Hausdorff (resp. regular) paratopological group G with Hs(G) � ω (resp. Ir(G) � ω) and with
property ω-Q U is R2-factorizable (resp. R3-factorizable).

Corollary 4.21. ([17, Theorem 3.7]) Let G be a Hausdorff totally ω-narrow paratopological group. If G is Lindelöf, then it is R2-
factorizable.

Proof. Since every Hausdorff Lindelöf paratopological group H has Hs(H) � ω [20], the statement directly follows from
Theorems 4.10 and 4.20. �
5. Open homomorphic images of RRR-factorizable paratopological groups

In this section, we answer partially to the following question posed in [17].

Question 5.1. ([17, Problem 5.2]) Let G be an Ri -factorizable paratopological group, for some i ∈ {1,2,3,3.5}. Is every open continuous
homomorphic image H of G an Ri -factorizable paratopological group, provided that H satisfies the Ti -separation axiom?
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Lemma 5.2. Let G be a paratopological group with property ω-Q U (resp. property Bω-Q U ). If N is a closed normal subgroup of G,
then the quotient group G/N has property ω-Q U (resp. property Bω-Q U ).

Proof. Let p : G → G/N be a quotient homomorphism. Then p is an open continuous homomorphism [2, Theorem 1.5.1].
Take any continuous (resp. bounded and continuous) real-valued function f on G/N . Then f ◦ p is a continuous (resp.
bounded and continuous) real-valued function on G . Since G has property ω-Q U (resp. Bω-Q U ), f ◦ p is ω-quasi-
uniformly continuous by Definition 4.2. According to Proposition 4.4, there exists a countable family U f ◦p ⊂ N (G) satisfying
that for every x ∈ G and ε > 0, there exists Ux,ε ∈ U f ◦p such that | f ◦ p(x) − f ◦ p(y)| < ε whenever x−1 y ∈ Ux,ε . Put
U f = {p(U ): U ∈ U f ◦p}. Since p is an open homomorphism, one can easily verify that U f satisfies the condition (2) in
Proposition 4.4, which implies that f is left ω-quasi-uniformly continuous. Similarly, one can easily prove that f is right
ω-quasi-uniformly continuous. Thus G/N has property ω-Q U (resp. property Bω-Q U ). �
Theorem 5.3. Let G be a completely regular R2-factorizable (resp. R3-factorizable) paratopological group and p : G → K an open and
continuous homomorphism onto a Hausdorff (resp. regular) paratopological group K . If Hs(K ) � ω (resp. Ir(K ) � ω) holds, then K is
R2-factorizable (resp. R3-factorizable).

Proof. To show that K is R2-factorizable (resp. R3-factorizable), by Theorem 4.20, it is enough to show that K is a to-
tally ω-narrow paratopological group with property ω-Q U . Indeed, Remark 4.16 implies that G has property ω-Q U . From
Lemma 5.2 it follows that K has property ω-Q U as well. Thus, it remains to prove that K is totally ω-narrow.

It is well known that every completely regular R1-factorizable paratopological group is totally ω-narrow [17, Proposi-
tion 3.5]. Thus G is totally ω-narrow, that is, G∗ is an ω-narrow topological group. Clearly, p : G∗ → K ∗ is a continuous
homomorphism. Since the ω-narrowness is preserved by continuous homomorphisms for topological groups [2, Proposition
3.4.2], K ∗ is ω-narrow, that is, K is totally ω-narrow. �
Corollary 5.4. Let G be a completely regular R2-factorizable (resp. R3-factorizable) paratopological group and p : G → K an open
and continuous homomorphism onto a Hausdorff (resp. regular) Lindelöf paratopological group K . Then K is R2-factorizable (resp.
R3-factorizable).

Proof. Since every Hausdorff (resp. regular) Lindelöf paratopological group K has Hs(K ) � ω (resp. Ir(K ) � ω) [20], the
statement directly follows from Theorem 5.3. �
Corollary 5.5. Let G be a completely regular R2-factorizable (resp. R3-factorizable) paratopological group and p : G → K an open
and continuous homomorphism onto a Hausdorff (resp. regular) first-countable paratopological group K . Then K is R2-factorizable
(resp. R3-factorizable).

Proof. It is well known that a Hausdorff (resp. regular) first-countable paratopological group K has Hs(K ) � ω (resp.
Ir(K ) � ω) [20]. Thus, the statement directly follows from Theorem 5.3. �
Theorem 5.6. Let G be a completely regular R2-factorizable (resp. R3-factorizable) paratopological group and p : G → K an open and
continuous homomorphism onto a Hausdorff (resp. regular) paratopological group K with identity e such that p−1(e) is countably
compact. Then K is R2-factorizable (resp. R3-factorizable).

Proof. By Theorem 5.3, it is enough to prove that Hs(K ) � ω (resp. Ir(K ) � ω).
Take any open set U of the identity in K and put W = p−1(U ). By Lemma 4.14, Hs(G) � ω, thus, one can easily find a

countable family {V i | i ∈ ω} of open neighborhoods at the identity in G such that
⋂

i∈ω V i V −1
i ⊂ W and V 2

i+1 ⊂ V i for each

i ∈ ω. We claim that the family {p(V i) | i ∈ ω} satisfies
⋂

i∈ω p(V i)p(V i)
−1 ⊂ U , which implies that Hs(K ) � ω.

To prove that
⋂

i∈ω p(V i)p(V i)
−1 ⊂ U , it is enough to show that for each x /∈ U , there exists i0 ∈ ω such that V i0 V −1

i0
∩

p−1(x) = ∅.

Since V i+1 V −1
i+1 ⊂ V i+1 V −1

i+1 V −1
i+1 ⊂ V i+1 V −1

i ⊂ V i V −1
i for each i ∈ ω, we have

⋂
i∈ω V i V −1

i = ⋂
i∈ω V i V −1

i . Thus,⋂
i∈ω V i V −1

i ∩ p−1(x) = ∅ by
⋂

i∈ω V i V −1
i ⊂ W = p−1(U ). According to the countable compactness of p−1(x), one can

easily obtain that there exists i0 ∈ ω such that V i0 V −1
i0

∩ p−1(x) = ∅.
Similarly, one can obtain that Ir(K ) � ω. �

Corollary 5.7. Let G be a completely regular R2-factorizable (resp. R3-factorizable) paratopological group and N a compact normal
subgroup in G. Then the quotient group G/N is R2-factorizable (resp. R3-factorizable).
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6. Open problems

It is well known that every subgroup of a Hausdorff σ -compact paratopological group is R2-factorizable [17, Proposition
3.16]. Thus, according to Theorem 3.6, the following question arises in a natural way.

Question 6.1. Are dense subgroups of a topological product of Hausdorff σ -compact paratopological groups R2-factorizable?

In [23], it shows that every real-valued function on a topological group G is left ω-uniformly continuous if and only if
every real-valued function on it is right ω-uniformly continuous, so we pose the following.

Question 6.2. Can the condition “ω-balanced” be dropped in Corollary 4.6?

It is known that every R1-factorizable paratopological group is totally ω-narrow [17, Proposition 3.5], however, the proof
of it seems to use the condition “completely regular”. Thus, we have the following.

Question 6.3. Is every regular R1-factorizable paratopological group totally ω-narrow?

If the answer to Question 6.3 is positive, then the sufficiency of Theorem 4.20 is also true. We do not know if the
condition “completely regular” can be dropped in Lemma 4.14.

Question 6.4. Does Hs(G) � ω (resp. Ir(G) � ω) hold for every Hausdorff R2-factorizable (resp. regular R3-factorizable) paratopo-
logical group G?

If the answers to Questions 6.3 and 6.4 are affirmative, then the condition “completely regular” can be dropped in
Theorem 4.15. Thus the following question is posed.

Question 6.5. Let G be a Hausdorff (resp. regular) paratopological group with Hs(G) � ω (resp. Ir(G) � ω). Does every open homo-
morphic image H of G have Hs(G) � ω (resp. Ir(G) � ω), provided H is a T2-space (resp. T3-space)?
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