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Abstract. A space X is said to be π-metrizable if it has a σ-discrete π-

base. In this paper, we mainly give affirmative answers for two questions

about π-metrizable spaces. The main results are that: (1) A space X is

π-metrizable if and only if X has a σ-hereditarily closure-preserving π-base;

(2) X is π-metrizable if and only if X is almost σ-paracompact and lo-

cally π-metrizable; (3) Open and closed maps preserve π-metrizability; (4)

π-metrizability satisfies hereditarily closure-preserving regular closed sum

theorems. Moreover, we define the notions of second-countable π-metrizable

and strongly π-metrizable spaces, and study some related questions. Some

questions about strongly π-metrizability are posed.

1. Introduction

π-metrizable spaces were first studied by V. Ponomarev as a necessary con-

ditions for being the absolute of a metrizable space [8]. In [6], D. Fearnley has

constructed a Moore and π-metrizable space which cannot be densely embedded

in any Moore space with the Baire property. In [10], D. Stover has proved that

a space X is π-metrizable if and only if X has a σ-locally finite π-base. It is

well known that a regular space is metrizable if and only if it has a σ-hereditarily

closure-preserving base. Recently, C. Liu posed the following two questions in a

private communication with the authors.
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Question 1.1. If X has a σ-hereditarily closure-preserving π-base, is X π-

metrizable?

Question 1.2. Is π-metrizability preserved by open and closed maps?

Obviously, if the Question 1.1 is affirmative, then Question 1.2 is also affirma-

tive.

In this paper, we shall give an affirmative answer for Questions 1.1 and 1.2,

respectively. In fact, we prove that quasi-open and closed maps preserve π-

metrizability. We also improve some results in [10]. Moreover, we define the

notions of second-countable π-metrizable and strongly π-metrizable spaces, and

study some related questions.

Definition 1. Let X be a space. A collection of nonempty open sets U of X

is called a π-base if for every nonempty open set O, there exists an U ∈ U such

that U ⊂ O. A space X is said to be π-metrizable if it has a σ-discrete π-base.

A space X is called a second-countable π-metrizable space if X has a countable

π-base.

Obviously, every second-countable π-metrizable space is π-metrizable.

Definition 2. Let f : X → Y be a map.

(1) f is a compact map if each f−1(y) is compact in X;

(2) f is a perfect map if it is a closed and compact map;

(3) f is a quasi-open map if Intf(U) 6= ∅ for any non-empty open subset U

of X;

(4) f is called at most k-to-one map if |f−1(y)| ≤ k for every y ∈ Y , where

k ∈ N;

(5) f is an irreducible map if there does not exist a proper closed subset X ′

of X such that f(X ′) = Y .

Definition 3. [3] Let P be a family of subsets of a space X. P is hereditarily

closure-preserving (abbrev. HCP) if, whenever a subset S(P ) ⊂ P is chosen for

each P ∈ P, the family {S(P ) : P ∈ P} is closure-preserving.

Definition 4. [10] A space X is called strongly d-separable if there exists {Kn :

n ∈ N} such that each Kn is a closed discrete subset of X and ∪{Kn : n ∈ N} is

dense in X.

For a topological space X, let P be a family of subsets of X, and let

I(X) = {x : x is an isolated point of X},
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(P)x = {P ∈ P : x ∈ P} for each x ∈ X.
However, we denote Px by a subfamily of (P)x for each x ∈ X.

Throughout this paper, all spaces are assumed to be T1 and regular, all maps

are continuous and onto. Denote the positive natural numbers by N. We refer

the reader to [5] for notations and terminology not explicitly given here.

2. π-metrizable spaces

First, we give two technical lemmas in order to give an affirmative answer for

Question 1.1.

Lemma 2.1. [3] Let P be a HCP collection of open subsets of X and A ⊂ X. If

x ∈ Ad and G is a Gδ-set of X such that x ∈ G and G ∩ (A − {x}) = ∅, then

(P)x is finite

Lemma 2.2. Let X have a σ-HCP π-base P =
⋃
n∈N Pn, where Pn is HCP for

each n ∈ N. Then (Pn)x is finite for each x ∈ X \ I(X) and n ∈ N.

Proof. Fix a point x ∈ X \I(X). For each n ∈ N and P ∈ Pn, we choose a point

xP ∈ P \ {x}. Let Fn = {xP : P ∈ Pn}. Then Fn is closed. Put A =
⋃
n∈N Fn

and G = X−A. For each x ∈ U with U open in X, there exists a P ∈ P such that

P ⊂ U , and hence xP ∈ U ∩ (A − {x}) 6= ∅. Therefore, x ∈ Ad ∩ G. Obviously,

G is a Gδ-set and G ∩ (A− {x}) = ∅. Hence (Pn)x is finite by Lemma 2.1. �

A collection of sets U in a space X each with nonempty interior is called a

π∗-base [10] if for each open set O there is an U ∈ U such that U ⊂ O.

Theorem 2.3. For a topological space X, the following are equivalent:

(1) X is a π-metrizable space;

(2) X has a σ-HCP π-base;

(3) X has a σ-locally finite π-base.

Proof. (1)⇒(2) is obvious. (3)⇒(1) by [10, Theorem 2.2]. Hence we only need

to prove (2)⇒(3).

Let P =
⋃
n∈N Pn be a σ-HCP π-base of X, where each Pn is HCP. By the

regularity, for each P ∈ P, there is a nonempty closed subset BP in X such

that BP ⊂ P , and if P 6⊂ I(X) then int(BP ) ∩ (X \ I(X)) 6= ∅. Let B =⋃
n∈N Bn, where Bn = {BP : P ∈ Pn} for each n ∈ N. It is easy to see that

B =
⋃
n∈N Bn is a σ-HCP π∗-base of X. For each n ∈ N, let X(n) = {x ∈ X :

Bn is locally finite at point x}.
Claim: For each n ∈ N, X \ I(X) ⊂ X(n).
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Indeed, put x ∈ X \ I(X). It follows from Lemma 2.2 that (Pn)x is finite,

and hence (Bn)x is also finite. Therefore, ∪(Bn \ (Bn)x) is closed and does not

contain x, and hence X \ (∪(Bn \ (Bn)x)) is an open neighborhood of x and at

most intersects finitely many elements of Bn. So, x ∈ X(n).

It is obvious that X(n) is open for each n ∈ N. Let P ′n = {int(B) ∩ X(n) :

B ∈ Bn}. Then P ′n is a locally finite collection of open subsets of X for each

n ∈ N. Put P ′′n = {{x} : {x} ∈ Bn} for each n ∈ N. Then P ′′n is discrete for each

n ∈ N. Let P ′ =
⋃
n∈N(P ′n ∪ P ′′n). It is easy to see that P ′ is a σ-locally finite

π-base for X. Indeed, for each nonempty open subset O of X, if O ∩ I(X) 6= ∅,
then we choose a point x ∈ O ∩ I(X) and therefore, {x} ∈ B and {x} ⊂ O; if

O ∩ I(X) = ∅, then there is a B ∈ B with B ⊂ O since B is a π∗-base, and

therefore, ∅ 6= int(B) ∩X(n) ⊂ O by the Claim. �

Corollary 2.4. A space X is π-metrizable if and only if X has a σ-HCP π∗-base

P such that, for every P ∈ P, P is a regular closed set of X.

In [10], D. Stover has proved that open perfect or irreducible perfect maps

preserve π-metrizability. However, we have the following Theorem 2.5, Corollar-

ies 2.6 and 2.7, which give an affirmative answer for Question 1.2 and also improve

some results in [10].

Theorem 2.5. Quasi-open and closed maps preserve π-metrizability.

Proof. Let f : X → Y be an quasi-open and closed map, where X is a π-

metrizable space. It follows from Theorem 2.3 that X has a σ-HCP π-base P.

Since closed maps preserve HCP collections, f(P) is a σ-HCP collection of subsets

of Y . Since f is a quasi-open map, {intf(P ) : P ∈ P} is a π-base for X. Hence

Y is a π-metrizable space by Theorem 2.3. �

Corollary 2.6. Open and closed maps preserve π-metrizability.

Corollary 2.7. Irreducible closed maps preserve π-metrizability.

Proof. It follows from the definition of the irreducible closed mappings that an

irreducible closed map is quasi-open. Therefore, irreducible closed maps preserve

π-metrizability by Theorem 2.5. �

However, perfect maps don’t preserve π-metrizability, see Example 2.1.

A topological property P satisfies hereditarily closure-preserving regular closed

sum theorems if a topological space X has a hereditarily closure-preserving regular

closed covering {Fα}α∈A such that Fα has topological property P for every α ∈ A,

then X has topological property P.
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Lemma 2.8. Suppose the topological property P satisfies the following two con-

ditions:

(1) P is preserved by topological sums;

(2) P is preserved by quasi-open and closed maps,

then P satisfies hereditarily closure-preserving regular closed sum theorem.

Proof. Let {Fα}α∈A be a hereditarily closure-preserving regular closed covering

for a space X, where Fα has topological property P for every α ∈ A. For every

α ∈ A, let F ′α denote a copy of Fα and let fα be this homeomorphism. Put X∗

be the disjoint topological sum of F ′α, and define a map f from X∗ onto X as

follows: for every x ∈ X∗, if x ∈ F ′α, then f(x) = fα(x).

Obviously, f is a map. It follows from (1) that X∗ has topological property P.

It is easy to see that f is a closed map since {Fα}α∈A is HCP. Now we only need

to show that f is a quasi-open map. Since Fα is a regular closed set, there is an

open subset Uα of X such that Fα = Uα. Clearly, it is sufficient to show that

intf(E) 6= ∅ for each non-empty open subset E in F ′α. Since fα : F ′α → Uα is a

homeomorphism map, fα(E) is open in Uα, and therefore, there exists an open

subset U in X such that fα(E) = U ∩Uα. Choose a point x ∈ fα(E). Then there

is an open subset V (x) of X such that x ∈ V (x) ⊂ U . Since x ∈ fα(E) ⊂ Uα,

V (x)∩Uα 6= ∅. Then V (x)∩Uα ⊂ fα(E), and hence intfα(E) 6= ∅. Since E ⊂ F ′α,

f(E) = fα(E). Then f is quasi-open. Therefore, X has topological property P
by (2). �

Theorem 2.9. π-metrizability satisfies hereditarily closure-preserving regular

closed sum theorems.

Proof. It is easy to prove that π-metrizability is preserved by topological sums.

Since π-metrizability is preserved by quasi-open and closed maps, π-metrizability

satisfies locally finite regular closed sum theorem by Lemma 2.8. �

It is well known that a space X is metrizable if and only if X is paracompact

and locally metrizable. However, there exists a π-metrizable space such that X

is non-paracompact. But we have the following Theorem 2.10.

A space X is called almost σ-paracompact if, for each open covering U of X,

there is a σ-locally finite open collection V such that V refines U and ∪V is dense

in X. Obviously, paracompact or π-metrizable spaces are almost σ-paracompact.

Theorem 2.10. A space X is π-metrizable if and only if X is almost σ-

paracompact and locally π-metrizable.
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Proof. Obviously, we only need to show the sufficiency.

Let X be almost σ-paracompact and locally π-metrizable. For each x ∈ X,

there exists an open neighborhood Vx of x such that Vx is π-metrizable. Then

{Vx : x ∈ X} is an open covering for X. Since X is almost σ-paracompact, there

exists a σ-locally finite open collection V refining {Vx : x ∈ X} and ∪V is dense

in X. We denote V by V =
⋃
m∈N Vm. By the regularity, we can assume that

V = {V : V ∈ V} refines {Vx : x ∈ X}. Obviously, V is σ-locally finite. Fix

an m ∈ N. For each V ∈ Vm, since π-metrizability is preserved by the closure

of open subspaces, V is π-metrizable, and therefore, let P(V ) =
⋃
n∈N Pmn(V )

be a σ-discrete π-base for V , where Pn(V ) is discrete in V for each n ∈ N. In

fact, for each V ∈ V and W ∈ P(V ), we can also assume that W ⊂ V . Put

Pmn =
⋃
V ∈V Pmn(V ) and P =

⋃
m,n∈N Pmn. Then P is a σ-locally finite π-base

for X. Firstly, P is a π-base for X. In fact, let U be a nonempty open subset for

X. Since ∪V is dense in X, there is an V ∈ V such that U∩V 6= ∅. It follows from

W ⊂ V for each W ∈ P(V ) that there exists a W ∈ P(V ) such that W ⊂ U ∩ V .

Now, we show that Pmn is locally finite for each m,n ∈ N. For each x ∈ X,

since Vm is locally finite, there exists an open neighborhood U(x) of x such that

U(x) intersects only finitely many elements of Vm, We denote those finitely many

elements by V 1, · · · , V k. Then we need only to find an open neighborhood G of

x such that G intersects only finitely many elements of
⋃k
i=1 Pmn(Vi). Clearly,

Pmn(Vi) is locally finite in X for each 1 ≤ i ≤ k. For each 1 ≤ i ≤ k, there exists

an open subset Ui with x ∈ Ui such that Ui intersects only finitely many elements

of Pmn(Vi). Let G = U(x) ∩ (
⋂k
i=1 Ui). Clearly, G is an open neighborhood of x

and intersects only finitely many elements of
⋃k
i=1 Pmn(V i). �

Remark. (1) We can not omit the condition “X is almost σ-paracompact” in

Theorem 2.10. Indeed, Isbell-Mrówka space ψ(D) [2] is locally π-metrizable and

non-π-metrizable, where D is a discrete space with |D| = ℵ1. However, it is easy

to see that ψ(D) is not an almost σ-paracompact space;

(2) We can not replace “X is almost σ-paracompact” by “X is almost para-

compact” in Theorem 2.10, where a space is called almost paracompact [9] if, for

each open covering U , there is a locally finite open collection V such that V refines

U and ∪V is dense in X. In fact, Isbell-Mrówka space ψ(N) [2] is a π-metrizable

space and non-almost paracompact.

Next, we discuss the second-countable π-metrizable spaces.



π-METRIZABLE SPACES AND STRONGLY π-METRIZABLE SPACES 279

It is clear that second-countable π-metrizability is preserved by open subspaces,

closures of open subspaces, and dense subspaces. As countability, let X be a π-

metrizable space. Then X is a second-countable π-metrizable space if X satisfies

one of the following conditions:

(1) X is separable;

(2) X is Lindelöf;

(3) X is pseudocompact.

Remark It is well known, for a metrizable space X, that X is separable if

and only if X is Lindelöf. However, there is a separable and π-metrizable space,

which is not a Lindelöf space, for example, Isbell-Mrówka space ψ(N) [2].

The following result is easy to see.

Proposition 2.11. Second-countable π-metrizability is preserved by quasi-open

maps.

However, there exists a non-π-metrizable space, which is the image of a second-

countable π-metrizable space under a closed and at most two-to-one map, see

Example 2.1.

Theorem 2.12. A space Y is the image of a second-countable π-metrizable space

X under a closed and at most two-to-one map if and only if Y is separable.

Proof. Necessity. Since a second-countable π-metrizable space is separable, Y

is separable.

Sufficiency. If Y is finite, it is obvious. Hence we can assume that Y is infinite.

Let {dn : n ∈ N} be a countable dense subset for Y , where dn 6= dm for distinct

n,m ∈ N. Let X = {(n, dn) : n ∈ N}∪ ({p}×Y ) and endow X with the subspace

topology of N∗×Y , where N∗ = N∪{p} is the Alexandroff compactification of N.

Claim: X is second-countable π-metrizable.

Let Pn = {(n, dn)} and Bn = {(p, dn) : {dn} ∈ τ(Y )} for each n ∈ N. Ob-

viously, Pn and Bn are discrete for each n ∈ N, where Bn = ∅ if {dn} 6∈ τ(Y ).

Then
⋃
n∈N(Pn ∪ Bn) is a π-base for X. Indeed, let O be a nonempty open sub-

set of X. Then there exist an m ∈ N and an open subset U of Y such that

O = ((N∗ \ {1, 2, · · · ,m − 1}) × U) ∩X. Obviously, we only need to prove that

O ∩ {(n, dn) : n ∈ N} 6= ∅ or O ∩ L 6= ∅, where L = {(p, dn) : {dn} ∈ τ(Y )}.
If O ∩ ({p} × Y ) = ∅, then it is obvious. Therefore, we can assume that

O ∩ ({p} × Y ) 6= ∅. Suppose that O ∩ {(n, dn) : n ∈ N} = ∅. Then O ⊂ {p} × Y .

Since U is open in Y , there exists an n ∈ N such that dn ∈ U . Assume that

O ∩ L = ∅. Then (n, dn) ∈ O if n ≥ m, this is a contradiction. Hence n < m.
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Since U \ {d1, d2, · · · , dm−1} 6= ∅, there is an n0 ≥ m such that dn0
∈ U . There-

fore, (n0, dn0) ∈ O, this is a contradiction. Hence O ∩L 6= ∅. Then there exists a

k ∈ N such that (p, dk) ∈ Bk and (p, dk) ∈ O ∩ L.

Let f : X → Y be the natural projection map. Since N∗ is compact, the

projection of N∗ × Y onto Y is a closed map. It follows from X is a closed

subspace of N∗ × Y that f is a closed map. Obviously, for each y ∈ Y , f−1(y) is

at most two points set. Hence f is a closed and at most two-to-one map. �

Corollary 2.13. A space Y is the image of a second-countable π-metrizable space

X if and only if Y is separable.

Example 2.1. There exists a regular and separable space X, which is not a π-

metrizable space. Therefore, closed and at most two-to-one maps don’t preserve

π-metrizability by Theorem 2.12.

Proof. Suppose that I = [0, 1] is the closed unit interval with a subspace of the

usual topology R, and X = II with the product topology. Then X is a regular

and separable space. However, X is not a π-metrizable space by [10, Theorem

3.11]. �

3. Strongly π-metrizable spaces

Definition 5. Let P be a collection of open subsets of X. P is called a strong

π-base [1] if P =
⋃
x∈X Px and, for each x ∈ X, Px is a strong π-base at point x,

that is, Px is a π-base at point x and every open neighborhood of x contains all

but finitely many elements of Px.

X is called strongly π-metrizable if X has a σ-discrete strong π-base. X is

called second-countable strongly π-metrizable if X has a countably strong π-base.

It is obvious that every metrizable space is strongly π-metrizable, and every

strongly π-metrizable space is π-metrizable. The implications of the converses

are not true.

(1) Isbell-Mrówka space ψ(N) [2] is a strongly π-metrizable space, but it is not

a metrizable space;

(2) Let K be a discrete space with |K| = ℵ1. Kℵ1 is π-metrizable by [10], and

however, Kℵ1 is a non-strongly π-metrizable space by the following Theorem 3.12.

Clearly, if P =
⋃
x∈X Px is a strong π-base for X, then every infinite subfamily

of Px is a strong π-base at point x. Therefore, we have the following result.

Proposition 3.1. If X has a strong π-base, then every point of X has a countably

strong π-base.
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In [10], D. Stover given a non-metrizable topological group, which is π-

metrizable. However, we have the following result by Theorem 3.1.

Theorem 3.2. If X is a topological group with a strong π-base, then X is metriz-

able.

Proof. Obviously, X is has a countable π-character by Proposition 3.1. Then

X is metrizable by [4, Theorems 3.6 and 1.8]. �

Theorem 3.3. For a topological space X, the following are equivalent:

(1) X is a strongly π-metrizable space;

(2) X has a σ-HCP strong π-base;

(3) X has a σ-locally finite strong π-base.

Proof. (1)⇒(2). It is obvious. From [10, Lemma 2.1], it is easy to see that

(3)⇒(1).

It is easy to see that (2)⇒(3) by the proof of (2)⇒(3) in Theorem 2.3. �

It is obvious that strongly π-metrizability is preserved by open subspaces or

dense subspaces. However, we have the following questions.

Question 3.1. Is strongly π-metrizability preserved by the closures of open sub-

spaces?

Question 3.2. Let X be a paracompact space. If X is locally strongly π-

metrizable, then is X strongly π-metrizable?

Theorem 3.4. Quasi-open and closed maps preserve strongly π-metrizability.

Proof. Let f : X → Y be an open and closed map, where X is a strongly

π-metrizable space. It follows from Theorem 3.3 that X has a σ-HCP strong π-

base P. Since closed maps preserve HCP collections, f(P) is a σ-HCP collection

of subsets of Y . Since f is a quasi-open map, {intf(P ) : P ∈ P} is a σ-HCP

strong π-base of Y . In fact, for each y ∈ Y , choose a fixed point xy ∈ f−1(y).

Then {intf(P ) : P ∈ Pxy} is a strong π-base at point y. Hence Y is a strongly

π-metrizable space by Theorem 3.3. �

Corollary 3.5. Open and closed maps preserve strongly π-metrizability.

Corollary 3.6. Irreducible closed maps preserve strongly π-metrizability.

Proof. It is easy to see by Theorem 3.4 and the proof of Corollary 2.7. �

Example 3.3. There exists a non-strongly π-metrizable space X, which is the

inverse image of a strongly π-metrizable space under a perfect map.
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Proof. Let D be an uncountable set and endow D with a discrete topology.

Let Z be the Alexandroff compactification of D, that is, Z = D ∪ {z}. Let

X = ψ(N)×Z be the product topology, where ψ(N) is Isbell-Mrówka space. Then

the projection π1 : X → ψ(N) is a perfect map. However, X is a non-strongly

π-metrizable space. Suppose not, then the point x = (1, z) ∈ X has a countable

strong π-base Px by Proposition 3.1. Since every open neighborhood of z in Z

has the form Z − A with A a finite subset of D, there exists a countable subset

L ⊂ D such that (D − L) ⊂ π2(P ) for each P ∈ Px. Choose a point y ∈ D − L.

Then {1}× (Z−{y}) is an open neighborhood of (1, z). But P 6⊂ {1}× (Z−{y})
for each P ∈ Px, this is a contradiction. �

Question 3.4. Do irreducible perfect maps inversely preserve strongly π-

metrizability?

Theorem 3.7. Let Y be a Fréchet space. Then Y is the image of a strongly

π-metrizable space X under a perfect map if and only if Y is strongly d-separable.

Proof. Necessity. It is obvious.

Sufficiency. Let
⋃
n∈NDn be a dense subset for Y , where Dn is a closed and

discrete subspace of Y for each n ∈ N. Put En =
⋃n
i=1Di for each n ∈ N.

Obviously, for each n ∈ N, En is a closed and discrete subspace of Y .

By the same notations in Theorem 2.12. Let X = (∪{{n} × En : n ∈ N}) ∪
({p}×Y ). Then X is a strongly π-metrizable space. Indeed, let Bn = {(n, d) : d ∈
En} for each n ∈ N. Obviously, Bn is discrete for each n ∈ N. Then B =

⋃
n∈N Bn

is a strong π-base for X.

(i) If x = (n, d) ∈ {n} × En for some n ∈ N, then let Bx = {(n, d)}, and

therefore, Bx is a strong π-base at point x.

(ii) If x = (p, d) ∈ {p} ×
⋃
n∈NEn, then there exists an m ∈ N such that

d ∈ Em. We let Bx = {(i, d) : i ≥ m} ⊂ B. Then Bx is a strong π-base at point

x.

(iii) If x = (p, d) ∈ {p}×(Y \
⋃
n∈NEn), then d ∈

⋃
n∈NEn. Since Y is Fréchet,

there exists a sequence {dn}∞n=1 in
⋃
n∈NEn such that dn → d as n→∞. By the

induction on N, we can define an increasing sequence {mdn}∞n=1 in N such that,

for each n ∈ N, mdn > n, and dn ∈ Emdn
. Let Bx = {(mdn , dn) : n ∈ N}. Then

Bx is a strong π-base at point x. In fact, let O be an open neighborhood at point

x. Then there exist an Nm = N∗ \ {1, 2, · · · ,m − 1} and an open neighborhood

U at point d in Y such that (Nm × U) ∩X ⊂ O. Since dn → d, there is a l ∈ N
such that {dn : n ≥ l} ⊂ U . Put k = max{l,m}. Then, for each n ≥ k, we have

(mdn , dn) ∈ (Nm × U) ∩X.
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Let f : X → Y be the natural projection map. Since N∗ is compact, the

projection of N∗×Y onto Y is a closed map. It follows from X is a closed subspace

of N∗ × Y that f is a closed map. For each y ∈ Y , since f−1(y) is homeomorphic

to a subspace of N∗ containing the limit point p, f−1(y) is compact. Hence f is

a perfect map. �

Corollary 3.8. Let Y be a Fréchet space. Then Y is the image of a strongly

π-metrizable space X under a closed map if and only if Y is strongly d-separable.

Theorem 3.9. Let Y be a Fréchet space. Then Y is the image of a second-

countable strongly π-metrizable space X under a closed and at most two-to-one

map if and only if Y is separable.

Proof. By the same notations in Theorem 2.12. Let X = {(n, dn) : n ∈ N} ∪
({p} × Y ), Pn = {(n, dn)} and Bn = {(p, dn) : {dn} ∈ τ(Y )} for each n ∈ N.

By a similar argument of Theorem 3.7, we can show that
⋃
n∈N(Pn ∪ Bn) is a

countably strong π-base for X and Y is the image of X under a closed and at

most two-to-one map. �

Example 3.5. There exists a Fréchet, π-metrizable, separable, regular, and non-

strongly π-metrizable space X. Therefore, closed and at most two-to-one maps

don’t preserve strongly π-metrizability by Theorem 3.9.

Proof. Let X be the sequence fan space Sω, which is obtained from the topolog-

ical sum of ω many copies of the convergent sequence by identifying all the limit

points to a point. Then X is Fréchet, π-metrizable, regular, and separable. Let

X = {xni : i, n ∈ N} ∪ {a}, where xni → a as i → ∞ for each n ∈ N. However,

X is non-strongly π-metrizable. Suppose not, there exists a collection Pa of open

subsets of X such that Pa is a strong π-base at point a. By an induction on N, we

can choose an increasing sequence {nk}k ⊂ N and a subfamily {Pnk
: k ∈ N} of Pa

such that, for each k ∈ N, Pnk
∩{xnki : i ∈ N} 6= ∅ and Pnk+1

∈ Pa \{Pni
: i ≤ k},

where Pnk
∈ Pa for each k ∈ N. Choose a point xnkink

∈ Pnk
∩ {xnki : i ∈ N} for

each k ∈ N. Then

U = {xnki : i > ink
, k ∈ N} ∪ {xni : n ∈ (N \ {nk : k ∈ N}), i ∈ N} ∪ {a}

is an open neighborhood of a. But Pnk
6⊂ U for each k ∈ N, this is a contradiction

with Pa is a strong π-base at point a. �

Theorem 3.10. If Xn is strongly π-metrizable for each n ∈ N, then X =∏
n∈NXn is strongly π-metrizable.
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Proof. It follows from Proposition 3.1 that every point of Xn has a countably

strong π-base for each n ∈ N. For each n ∈ N, let Pn =
⋃
x(n)∈Xn

Pnx(n) be a

σ-discrete strong π-base for Xn, where Pnx(n) = {U ix(n) : i ∈ N}. For every x ∈ X,

put

Px = {
n∏
k=1

Unx(k) ×
∞∏

k=n+1

Xk : n ∈ N}.

Then Px is a strong π-base at point x. Indeed, for any x ∈ U ∈ τ(X), then

U has the form U =
∏m
i=1Wi ×

∏∞
i=m+1Xi, where Wi is open in Xi for each

1 ≤ i ≤ m. Then for every 1 ≤ i ≤ m, there is a ki ∈ N such that Unx(i) ⊂ Wi

for every n ≥ ki. Put k0 = max{k1, · · · , km,m}. Therefore, for every n > k0
and 1 ≤ i ≤ m, Unx(i) ⊂ Wi, and hence

∏n
k=1 U

n
x(k) ×

∏∞
k=n+1Xk ⊂ U for every

n > k0.

Let P =
⋃
x∈X Px. By the proof of [10, Proposition 3.1], it is easy to see that

P is σ-locally finite. Hence X is strongly π-metrizable by Theorem 3.3. �

Corollary 3.11. If Xn has a strong π-base for each n ∈ N, then X =
∏
n∈NXn

also has a strong π-base.

Theorem 3.12. Let κ be an uncountable cardinal numbers. If Xα contains at

least two points for each α < κ, then the product topology X =
∏
α<κXα does

not have a strong π-base at any point of X. In particular, X is non-strongly

π-metrizable.

Proof. Suppose not; there is a point x ∈ X such that the point x has a countably

strong π-base Px. Then there exists a β < κ such that πβ(P ) = Xβ for each

P ∈ Px. Since Xβ is at least two points set, we choose a point y ∈ Xβ \ {πβ(x)}.
Then (Xβ \ {y})×

∏
α∈(κ−{β})Xα is an open neighborhood of x. However, P 6⊂

(Xβ \ {y})×
∏
α∈(κ−{β})Xα for each P ∈ Px, this is a contradiction. �

Question 3.6. Is it true that for any non-strongly π-metrizable spaces X and Y ,

we have that X × Y is also non-strongly π-metrizable?

Question 3.7. Does there exist a non-strongly π-metrizable space X such that

Xn is strongly π-metrizable for some n ∈ N?
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