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In 1984, Gruenhage [13] wrote a beautiful survey of the theory
of generalized metric spaCes. It contains the most important
results which has been achieved in the research of this field in more
than twenty years. The class of R®-spaces, as a generalization of
metric spaces, has many important properties, some of which have been
included in the Gruenhage's survey. During the recent years, a
great. deal of progress has been made for the study of R®-spaces.

This paper 1s devoted to a survey of this field, including China
.scholars’ some works, and ﬁoses some interesting open problems. It
contains four parts: Basic operation propérfies; Characterizations;
Relationship; Mapping properties. A detailed list of references 1is

given at the end.

1. Basic Operation Properties.

All spaces are assumed to be regular and T;. N denotes the
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set of positive Iintegers.

Definition 1.1 (Michael [25]) A collection 2? of subsets of
X 1is a pseudobase for X if, whenever K c U with K compact and
U open in X, then K c P ¢ U for some P € ?. A space with a

countable pseudobase 1s an Ry—space.

Definition 1.2 (0O'Meara [27]) A collection ? of subsets of X
is a k—-network for X 1if, whenever KcU with K compact and U
open in X, then K c u?’" ¢ U for some ?' c 2. A space with a

g-locally finite k-network is an R-space.

Why did 0'Meara introduce a new space by k-network rather than
pseudobase? Except for the concept of k-networks is a natural
generalization of one of bases, the following theorem clears our mind

of doubts from another points of view.

Theorem 1.3 (Shou Lin [20, 22]) A space with a point countable

pseudobase (hence with a o-locally finite pseudobase) is an Rg—space.

It is easy to check that (1) every metric space 1s an X-space;
(2) every subspace of a (paracompact) R-space is also a (paracompact)
R-space; (3) a product of countably many (paracompact) X-spaces 1s a
(paracompact) R-space; (4) a Image of a R-space under perfect
mappings 1s an K-space. These show that the class of R-spaces 1s an
important one of generalized metric spaces. Moreover, the following

theorem makes clear the reason that one is interested in R®-spaces.
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Theorem 1.4 (0'Meara [29]) If X 'is8 an ®yg—space and Y 1is a
paracompact R—space, then C(X, Y) with the compact-open topology

i3 a paracompact {—space.

O'Meara [29] asked whether the Theorem 1.4 is true when
"paracompact™ is deleted.. This question is a powerful stimulus for
growth in the theofy of R-spaces. For solving it, Guthrie introduced

the concept of cs-o-spaces.

Definition 1.5 (Guthrie {14, 15]) A collection 2 of subsets
of X 1is a cs—nétuork (i.e},'eonvergent-sequence network) for X
if, whenever Z c U with Z convergent sequence and U open in X,
then Z 1is eventually in P and P c U for some P € ?. A space

with a o-locally finite cs-network is a es-o-space.
The importance of cs-o-spaces is showed by the next theorem.

Theorem 1.6 (Guthrie [15]) If X 1is an Rg—space and Y 18 an
cs—-o—-space, Then C(X, Y) with the compact-open topology i8 a

C8—0—8pace.

"In [15], Guthrie proved also that every cs-o-space is an
R-space, and that every paracompact ®-space is a c¢s-o-space. An
exact relationship between cs-o-spaces and -spaces is related in the
next éection.

As is well known, the product of two k-spaces need not be a
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k-space. One of questions for study of general topology is to

search for a proper class of spaces in order to obtain the condition

under which the product of two k-spaces 1s a k-space. X-spaces play

an exceptional role in this field showed by the next theorem.

Theorem 1.7 (Tanaka [33]) Let X and Y be k-and R-8Spaces.

Then X XY 18 a k-space if and only if one of the following

properties hold:

(1) X and Y are meirizable spaces,

(2) X or Y 1is a locally compact spaces;

(3) X and Y are spaces of the class L’, where a space Z
i8 said to belong to the class L~ if it 18 the union of countably

many closed and locally compact subsets Zn such that A c Z 4s

closed whenever A N Zn 18 closed for all n.

One of important properties of metrizable spaces or stratifiable

spaces 1s that they satisfy the Dugundji Extension Theoremn. Do

normal RX-spaces have this property? Van Douwen answers negatively

this question.

Definition 1.8 (Van Douwen [3]) For a space X, let C*(X)

denote the set of all bounded, continuous, real ﬁalued functions on X.

Put
ifll = max{If(x)!: x € X}

for each f € C*(X). A space X 1s said to have property DZ. where
real number ¢ 2 1, if for each closed subspace F of X, there

exists a linear transformation ¢: C*(F) - C*(X) satisfying that if f
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€ C*(F). then

o(f)IF = £, and lo(f)ll £ clfll.

Metrizable spaces and stratifiable spaces have the property D:

(Dugundji [4], Borges [2]).

Theorem 1.9 (Van Douwen [3]) There exists an Rg—space which

has not any property DZ'.

Finally, it is not difficult to construct an example showing the

adjunction space of two metrizable spaces need not be an R-space.

2. Characterizations

One of the milestones in the development of the theory of
R-spaces is a series of important characterizations of R-spaces given

by the next theorem.

Theorem 2.1 (Foged [6], Gao [11]) The following properties of
a space X are equivalent:
(a) X 18 an R{-space;
(2) X 18 a cs-o-space;
(3) X has a o-discrete k-network,
(4) X has a o-locally finile cs—network.

By Theorem 1.6 and 2.1, we obtain an affirmative answer to the

question posed by 0'Meara in [{28] as follows.
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Corollary 2.2 If X is an Rg—-space and Y 1is an R{-space,

then C(X, Y) with the compact-open topology is an R-space.

A space with a o-hereditarily closure-preserving base (resp.
network) is a space with a 0-locally finite base (network). And
there exists a space with a o-hereditarlly closure-preserving

k-network which has not a o-1l1ocally finite K-network. However, we

have the following questions.

Question 2.3. Is a space with a o-hereditarily closure-

preserving cs-network an RX-space?

Question 2.4 Is a space whose square has a o-hereditarily

closure-preserving k-network an R-space?

The peculiarity of above-mentioned characterizations is

depicting R®-spaces by collections of closed subsets of the space. A

characterization given by collections of open subsets of the space is

the following theorem.

Theorem 2.5 (Nagata [26]) A space (X, t), where t denotes the
topology of X, is an ®-space if and only if there is a function
g:. N x X » t satisfying that

(1) if {z,: n €N} »pe€Xand if 2, € g(n, y ) for all n € ¥,
then {yn: n € N} » p, where » denofes convergence.

(2) 1if y € g(n, z), then g(n, y) c g(n, Z).

(3) for each £ € X and n € N,
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Question 2.6 (Nagata [26]) Is it possible to drop (2) from

Theorem 2.5?

3. Relationship

First, we recount the relations between RX-spaces and some
generalized metric spaces.

Definition 3.1 (Arhangel'skii [1], Siwiec [31]) A collection 2
of subsets of X 1s a weak base for X provided that 2 = U{?x: X €
X} such that

(1) x € n?x:

(2) 1if U, VvV e 2% then there exists a W € ?x with W c

%
UnyV;

(3) a subset F of X is closed if and only if for each point
X € X ~ F, there exists a B Es?x_ with B N F = ¢. A space is
g-first countable if X has a weak base U{?x: X € X} such that each
g is countable. A space X 1s g—-metrizable 1f X has a

X
o-locally finite weak base.

Obviously, every metrizable space 1is g-metrizable. An exact

relation between RX-spaces and g-metrizable spaces is related in the

next theorem which affirmatively answers a qQuestion posed by Siwiec

[31].

Theorem 3.2 (Foged [5]) A space X 18 g—metrizable if and

only 1f 1t i8 a g-first countable R-space.
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We have known that every g-metrizable space is a k- and R-space
and it contains no closed copy of sequential fan Sm. Is its

converse proposition true?

Question 3.3 Suppose X 1s a k- and R-space. Is X a

g-metrizable space if it contains no closed copy of Sw?

By Definition 1.1 and 1.2, a space with a countable k-network is

equivalent to a space with a countable pseudobase. Then, how any

X-space an R{yp-space?

Theorem 3.4 (0'Meara [27, 29]) The following conditions of a
gspace X are equivalent.

(1) X 1is an R{g—-space;

(2) X 1is an X-space with the Lindelof property.

(3) X 418 a hereditarily separable ¥—-gspace.

Theorem 3.4 causes to me to discuss the relation between

separable R®-spaces and Rg-spaces.

Theorem 3.5 (Shou Lin [18]) There exists a completely regular
separable R—-gpace which is not an Ry—space. Whether every normal

separable R—-space i8 an Ryp-space i8 independent of the arioms of set

theory.

Question 3.6 Is there a normal CCC ®-space which is not an
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RO"SDBCE?

Question 3.7 Is there a separable space with a o-hereditarily

closure-preserving k-network which is not an X-space?

'R-spaces are not relative to stratifiable spaces. A common

generalization of X-spaces and stratifiable spaces is the concept of

k-semistratifiable spaces introduced by Lutzer [23].

Definition 3.8 (Lutzer [23]) A space X 1s k—-semisiratifiable
space if, for each open set U c¢ X, one can assign a sequence {F(n,
U)} of closed-subsets of X such that

(1) U = U{F(n, U): n € N};

(2) F(n, U) ¢ F(n, V) whenever U c V;

(3) 1if K 1is a compact subset of U, then K ¢ F(n, U) for

some n € N.

It 1is easy to check that every R-space is a k-semistratifiable

space. How a k-semistratifiable space is an ®-space?

Question 3.9 Is a k-semistratifiable space with a o-locally

countable k-network an R®-space?

An {]-space has a Ga—diagonal. In fact, R-spaces have the

following strong properties.

Theorem 3.10 (Shou Lin [21]) If X 18 an R¥-8space, then there
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iS a sequence (Uﬁ) of open covers of X such that for each compact

subset K of X, K = nnst(K. Un).
Question 3.11 Has an ®-space a regular Ga—diagonal?

In the next part, we relate some covering properties on R-spaces.
Every R-space is a subparacompact space. But, an R®-space need not

be a metalindelof space, or not to be a normal space. One of

reasons consists in lacking an appropriate weakly first countability
axiom on \-spaces. In fact, it was by adding first countable axiom

to R-spaces that 0'Meara [28] obtalined a metrizable theorem on

R-spaces. When some weakly first countability axioms are added to

X-spaces, we can obtain certain covering properties. Some out-

standing achievements belong to Foged.

Theorem 3.12 (Foged [8]) If a (normal) R-space X 1S a4

k-space, then it i8 a (paracompact) metfalindelof space.

Theorem 3.13 (Foged [7]) If an R—-space X 1is a Fréchet space,
then it 18 a La¥nev sSpace {(i.e., a i1mage of a meirizable sSpace uUnder

a closed continuous mapping).

Corollary 3.14 (0'Meara [28]) If an ®-8space X satisfies the

first ¢ountab£bity axiom, then it 18 a metrizable space.

4. Mapping Properties

In this section, all mappings are continuous and onto.  Another
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milestone in the development of the theory of ®-spaces is to obtain a
series of mapping theorems on R®-spaces which are parallel to mapping
theorems on metric spaces. The motive force of mapping properties
of studying ®-spaces comes of Soviet mathematician Alexandroff's plan
which tries to express a space by a image of a metrizable space under
a mapping.
First of all, we consider closed mappings on ®-spaces.
Clearly, perfect mappings preserve R-spaces. Further, we have the

next theoremn.

Theorem 4.1 (Shou Lin [21}, Shu-~hao Sun [32]) R-8paces are

preserved under closed mappings with Lindelof fibers.

Corollary 4.2 (Zhi-min Gao, Y. Hattori [12], Lin [21]) For a
Frechet space X, X is an ®-gpace if and only if it is a image of a

metrizable space under a closed mapping with Lindelof fibers.

Theorem 4.3 (Zhi-min Gao [10]) Under the Continuum Hypothesis,
a Fréchet La¥nev space X 18 an R-space if and only if the character

xX(X) of X does not exceed R;.

Corollary 4.2 and Theorem 4.3 correspond to the Hanai-Morita-
Stone Theorem on metric spaces, by which it is not difficult to prové
that metrizability is preserved under open and closed mappings.

This suggests the following question.

Question 4.4  Are RX-spaces preserved under open and closed
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mappings ?

R—spaces are not preserved under closed mappings [17]. How -an
internal characterization has a image of R-spaces under a closed
mapping ? It is easy to check a image of R-spaces under a closed
mapping has a o-hereditarily closure—preserving k-network. The
following question is interesting, which is analogous to the internal

characterization on La¥nev spaces given by Foged [7].

Question 4.5 Is any space with a o-hereditarily

closure-preserving k-network a image of an K8-space under a closed

mapping ?
Secondly, we consider open mapplings on R-spaces. N-spaces are
not preserved under a finite-to-one open mapping [19]. We have

known that an image of a metric space under a (pseudo) open and
compact mapping is a development space [24], and that an image of a
k-semistratifiable space under a (pseudo) open and compact mapping is

a semistratifiable space [16]. Hence the following question is very

natural.

Question 4.6 Is an image of Y¥-spaces under a (pseudo) open and

compact mapping a og-space ?
Thirdly, we consider perfect inverse images on &-spaces.

Because a perfect inverse image of an R®-space need not be an &-space

[24], it is necessary to add an appropriate condition to ®-spaces in
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considering the question of inverse invariant of R-spaces under

perfect mappings.

theorem 4.7 (Shou Lin [21]) A perfect inverse image of an
‘R-space 1s an R-space if and only if it satisfies any of the
following:

(1) it has a Ga-diagonal:

(2) it has a point-countable k-network.
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