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Abstract

In this paper, we define the spaces with a regular base at non-isolated points and dis-
cuss some metrization theorems. We firstly show that a space X is a metrizable space, if
and only if X is a regular space with a o-locally finite base at non-isolated points, if and
only if X is a perfect space with a regular base at non-isolated points, if and only if X is
a [-space with a regular base at non-isolated points. In addition, we also discuss the rela-
tions between the spaces with a regular base at non-isolated points and some generalized
metrizable spaces. Finally, we give an affirmative answer for a question posed by F. C. Lin
and S. Lin in [7], which also shows that a space with a regular base at non-isolated points
has a point-countable base.

1. Introduction

The bases of topological spaces occupy a core position in the study of
the topological theories and metrization problems, which has produced many
kinds of metrization theorems, and establishes a foundation for the topolog-
ical development [12]. For example, the following is a classic metrization
theorem.

THEOREM 1.1. The following are equivalent for a space X :
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(1) X is metrizable;
(2) X is a Ti-space with a regular base;

(3) X is a regular space with a o-locally finite base.

In recent years, the theory of regular bases in topological spaces played
an important role in generalized metrizable spaces [2, 17]. On the other
hand, in the study of the theories of topological spaces, we are mainly con-
cerned with the properties of neighborhoods on non-isolated points, and also
discuss the relation between their properties and global properties. For ex-
ample, a study of spaces with a sharp base, a weakly uniform base or an
uniform base at non-isolated points [2, 3, 7] shows that some properties of a
non-isolated point set of a topological space will help us discuss the global
construction of a space. Especially, a space X with a uniform base at non-
isolated points if and only if X is the open and boundary-compact image of
a metric space [7]. The most typical example is the spaces obtained from a
metrizable space by isolating the points of a subset.

Let B be a base for a space X. For any z € X, the base B of X is called
reqular at a point x if, for every neighborhood U of z, there exists an open
subset V such that z € V.C U and {B€ B: BNV # () and B ¢ U} is finite.

By Theorem 1.1, every metric space has a base which is regular at non-
isolated points. However, there exists a non-metrizable space with a base
which is regular at non-isolated points, see the following Example 1.2.

EXAMPLE 1.2. Let X be the closed unit interval I = [0, 1] and B a Bern-
stein subset of I. In other words, B is an uncountable set which contains
no uncountable closed subset of I. Endow X with the following topology,
i.e., Michael line [15]: G is an open subset for X if and only if G =U U Z,
where U is an open subset of I with Euclidean topology and Z C B. Let
B be a base of I with the Euclidean topology, where B is regular at every
point of I. Then P = BU {{z} : « € B} is a base for X and also regular at
non-isolated points.

Hence this causes our interests in a study of spaces with a base which is
regular at non-isolated points, and the related problems of the metrizability.
In this paper, we shall prove that spaces with a regular base at non-isolated
points are strictly between the discretizations of metrizable spaces and proto-
metrizable spaces, and we also obtain some metrization theorems which help
us to better understand the relation between the properties at non-isolated
points and global properties in the study the generalized metrizable spaces.

In this paper all spaces are T; unless it is explicitly stated which sepa-
ration axiom is assumed, and all maps are continuous and onto. By R, N,
denote the set of real numbers and positive integers, respectively. For a
space X, let I = I(X) = {z : x is an isolated point of X} and Z(X) = {{z} :
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z € I(X)}. Let P be a family of subsets for X, and we denote

st(z,P)=U{PeP:xeP}, zelX;
st(A,P)=U{PeP: AnP#0}, AcCX,
P"={PeP: if PCQ€P, then Q = P}.

Readers may refer to [6, 13] for unstated definitions and terminology.

2. Regular bases at non-isolated points

DEFINITION 2.1. Let B be a base of a space X. B is a reqular base, see
e.g. [6] (regular base at non-isolated points, resp.) for X if for each (non-
isolated, resp.) point x € X, B is regular at x.

It is obvious that regular bases = regular bases at non-isolated points,
but regular bases at non-isolated points#- regular bases by Example 1.2.

DEFINITION 2.2. Let {W;},. be a sequence of open covers of a space
X and Z(X) C UjenWi-  {Witien is called a strong development, see
e.g. [6](strong development at non-isolated points, resp.) for X if for every
x € X (x € X —I) and each neighborhood U of z there exist a neighbor-
hood V' of z and an i € N such that st (V,W;) C U. If {W;},y is a strong

development at non-isolated points, then so is {VVz UZ(X )}ieN.
The following Lemma 2.3 is proved similarly to Lemma 5.4.3 in [6], and
leave to the reader the easy proofs of Lemma 2.4 and 2.5.

LEMMA 2.3. If B is a reqular base at non-isolated points for a space X,
then the family B™ C B is locally finite at non-isolated points and also covers
X -1

LEMMA 2.4. Let B be a regular base at mon-isolated points for X. If

B' C B is point-finite at non-isolated points, then B” = (B—B)YUZ(X) is a
regular base at non-isolated points for X.

LEMMA 2.5. If B is a reqular base at non-isolated points for X, put

i—1
<B — le Bj> UZ(X)

m

Bi=B", B;= 0 =2,3,....

Then B = (Ufil B,-) UZ(X), and for each i € N, B; is locally finite at non-
isolated points and Biy1 UZ(X) refines B; UZ(X).
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Recall that a topological space X is monotonically normal [10] if for each
ordered pair (p,C), where C' is a closed set for X and p € X — C, there exists
an open subset H (p, C') satisfying the following conditions:

(i) pe H(p,C) C X = C;
(ii) For every closed subset D for X, if D C C, then H(p,C) C H(p, D);

(iii) If p # q € X, then H(p, {q}) N H(q, {p}) = 0.

A Ts-paracompact space or monotonically normal space is a collection-
wise normal space [10].

LEMMA 2.6. If a space X has a strong development at non-isolated points,
then X is a monotonically normal and paracompact space.

PROOF. Let {W;},.y be a strong development at non-isolated points
for X, where W,y refines W; for every i € N.

(1) Claim. Let A be a closed subset for X. If z € (X — A)N (X — 1),
then there exists an ¢ € N such that st (x,W;) Nst (A, W;) = 0.

In fact, since X — A is an open neighborhood of x, there exists a j € N
and an open neighborhood V' of & such that st (V,W;) C X — A. Also, there
exists a ¢ = j such that st (z, W;) C V. Since st (A, W;) C X —V, we have
st (z, W;) Nst (A, W;) = 0.

(2) X is a monotonically normal space.

Let C be a closed subset for X and pe X —C. If pe€ I, then we
let H(p,C) = {p}; if p€ X — I, then there exists a minimum n € N such
that st (p, Wy) Nst (C,W,,) = 0 by (1), so we let H(p,C) = st (p, W,,). Then
H(p,C) is an open subset for X. Clearly this definition of H(p,C') satisfies
the conditions (i) and (ii) in the above definition of monotonically normal
spaces. We next prove that it also satisfies (iii). In fact, for any distinct
points p, ¢ in X — I, fix the n, m for which:

H(p,{q}) =st(p,W,) and H(q,{p}) = st (g, Wn).

Then
st (p, Wh) Nst (g, Wy) =0 and st (p, Win) Nst (g, Wi,) = 0.

By the choice of n, m, we have n = m, i.e, H(p, {q}) ﬂH(q, {p}) = (). Hence
it also satisfies (iii) in the definition of monotonically normal spaces.
(3) X is a paracompact space.

Let {Gs},cq be an open cover for X and Sy ={s€ S: GsN(X —1) #
@} . Fix a well-order by “<” on Sy. For every ¢ € N, s € Sy, put

Foi=X— (st(X—GS,WZ-)U < U GSI)>,

s'<s
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then F,; C Gs.
(3.1) The closed family {Fs;i},cg e

Indeed, for every x € X — I, there exists a minimum s(z) € Sy such
that z € Gy(;). Since {W;},cy is a strong development at non-isolated

points for X, there exists an i(x) € N such that st (ﬂ:, Wi(z)) C Gy(z)- Hence
2 € Fy@),i)-
(3.2) For every i € N, {Fj;} g is a discrete and closed family for X.

N Ccovers X —1.

The family {Fy;} g, is disjoint by construction, hence if z € I then {z}
is a neighborhood that intersects Fy; for at most one s. If x € X \ I then,
using (3.1), z € J,cg, G's- Hence there exists a minimum s(z) € Sp such that

r € Gy(g). Then Gy, Nst (2, W;) is an open neighborhood of z. If 8" < s(z),
then z € X — Gy, so we have

st (z,W;) Cst(X — Gy, W;) and st(z,W;)NFy,; =0.

If s’ > s(x), then Gy N Fy; = 0, so there is only one member of {Fy;}
which meets G;) N st (z,W;). Hence {Fj;}
family for X.

X is collectionwise normal since monotonically normal spaces are collec-
tionwise normal [10]. For every Fj;, there exists an open subset Gg; such
that Fs; C Gs; C G and {Gsvi}sESo is a discrete family. Let

s€So

is a discrete and closed
SESy

Bi = {Gsi}eq, U {{m} coxel- G}

s€Sy

Then (J;cy Bi is a o-locally finite open cover for X and refines {G,},g-
Since X is regular, X is paracompact. [l

Next we shall prove the main theorems in this section.

THEOREM 2.7. A space X has a reqular base at non-isolated points if
and only if X has a strong development at non-isolated points.

PROOF. Necessity. Since X has a regular base at non-isolated points, X
has a regular base at non-isolated points B = (UieN Bi) UZ(X) satisfying

Lemma 2.5, where B; is locally finite at non-isolated points and B;+1 UZ(X)
refines B; UZ(X) for every i € N. Put W; = B; UZ(X). We will show that
{Wi}icn is a strong development at non-isolated points for X. In fact, for
every z € X — I and each open neighborhood U of z, since B is regular at
non-isolated points, there exists an open neighborhood V' C U of x such that
the set of all members of B that meet both V and X — U is finite. We can
denote these finite elements by Bj, Bo,..., Br. Then there exists a j € N
such that B; N {B; : i < k} = 0. Hence st (V,W;) C U.
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Sufficiency. Let {W;},cy be a strong development at non-isolated points
for X. By Lemma 2.6, X is paracompact. For every i € N, let B; be a locally
finite open refinement for W;. Without loss of generality, we may assume
B; 11 refines B; for every i € N. We next prove that B = (UiEN Bi) UZ(X)
is a regular base at non-isolated points for X. Obviously B is a base for X.
For every x € X — I and each open neighborhood U of z, there exist an open
neighborhood V' of z and an i € N such that st (V,W;) C U. If j 2 i, then

st (V, BJ) C st (V, BZ) C st (V, Wl) cU.

However, since each B; is locally finite, there exists an open neighborhood
W(z) of z such that the set of all members of |J;_; B; that meet W (z) is

finite. LetV; =V NW(z). Then the set of all members of B that meet V;
and X — U is finite. O

Similar to definition 2.2, we say a space X has a development at non-
isolated points [7] if there exists a sequence {W;},;.y of open covers for X
such that, for every x € X — I and each open neighborhood U of z, there
exist an open neighborhood V of z and an ¢ € N such that st (V,W;) C U.

THEOREM 2.8. A space X has a regular base at non-isolated points if
and only if X is a Te-paracompact space with a development at non-isolated
points.

PRrROOF. Necessity. By Lemma 2.6 and Theorem 2.7, if X has a regu-
lar base at non-isolated points, then X is a Ts-paracompact space with a
development at non-isolated points.

Sufficiency. Let X be a To-paracompact space with a development
{Wi},cn at non-isolated points. Since X is a Th-paracompact space, there
exists a sequence of open covers {B;},.y for X such that B;; is a star refine-
ment of B; A W;,1 for every i € N. We next prove that {B;},.y is a strong
development at non-isolated points for X. For every x € X — I and every
open neighborhood U of x, there exists an i € N such that st (x, W;) C U.
Choose a V' € B;;1 such that x € V. Then

st (V, Bi—i—l) C st (ZL‘,BZ) C st (m,Wl) cU.

By Theorem 2.7, X has a regular base at non-isolated points. O

REMARK 2.9. We cannot omit the condition “Ts” in Theorem 2.8. In
fact, let X be the finite complement topology on N. Then X is a Ti-compact
and developable space, but it is not a Ts-space.

The following corollary is a complement for Lemma 2.5.

COROLLARY 2.10. A space X has a regqular base at non-isolated points
if and only if X is a reqular space with a development at non-isolated points
{Bi UI(X)} where B; is locally finite at non-isolated points for every

v € N.

1eN’
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PROOF. Necessity. It is easy to see by the proof of necessity in Theo-
rems 2.7 and 2.8.

Sufficiency. Let X be a regular space with a development at non-isolated
points {Bi UZ(X )}l N’ where B; is locally finite at non-isolated points for

every ¢ € N. For each ¢ € N| let
U; = {zx € X : B, is locally finite at point z}.

Then U; is an open subset and B; is locally finite at each point of U;. Since
X—-IcU;, X—-U; CcIandX —U,is an open subset for X. Hence U; is an
open and closed subset for X. Thus B; | U; = {BNU;: B € B;} is an open
and locally finite family.

By Theorem 2.8, we only need to prove that X is a paracompact space.
In fact, for every open cover U of X and each i € N, let

Vi ={BNU;: B € B, and there exists an U € U such that B C U}

and
Vi = UV,

Put

V= <UVZ~>U{{x}: reF}, where F=[)|(X-V).

ieN 1€EN

Then V is a cover for X and F C I. In fact, if x € X — I, then there exists an
U € U such that x € U. Hence there exists an n € N such that st (z, B,) C U.
Fixa B € B, suchthat x € B. Then BC U andz € BNU, € V,,. Sox € V,.
Then F' is a closed and discrete subset for X. Hence V is an open o-locally
finite cover and refines /. By the regularity, X is a paracompact space. [

EXAMPLE 2.11. There exists a non-regular Ty-space with a development
at non-isolated points.

Let Q, P denote the rational numbers and the irrational numbers, re-
spectively. Let X = R and endow X with the following topology [4]: every
point of P is an isolated point; every point x € Q has neighborhoods of the
following form:

B(z,n)={z}U{yeP: ly—z[<1/n}, neN

Then X is a non-regular Ts-space and the isolated points set of X is P. We
denote Q = {gy, : m € N}. For any n,m € N, let

Bn,m = {B(Qman)vR - {Qm}}a



98 F. LIN, S. LIN and H. J. K. JUNNILA

Then B, ;,, is a finite open cover for X, and st (qm, Brm UI(X)) = B(gm,n).
Hence { B, UI(X)}nmeN
and B, ,, is locally finite for any n,m € N.

is a development at non-isolated points for X

3. Metrization theorems

In this section we shall discuss the metrization problems on spaces with
the properties of bases at non-isolated points.
X is called a perfect space if every open subset of X is an Fj,-set in X.

THEOREM 3.1. Let X be a space. Then the following are equivalent:
(1) X is metrizable;

(2) X is a perfect space with a regular base at non-isolated points;
(3) X is a perfect space with a strong development at non-isolated points.

PRrROOF. By Theorems 1.1 and 2.7, we only need to prove (3) = (1).
Let X be a perfect space with a strong development at the non-isolated
points {W;},cn of X. Then there exists a sequence of open sets {Gn}, oy

such that X — I = (2, Gp. For every n € N, let Uy, = {Gp} U {{z}: z €
I— Gn} . Then {Uy }, <y is a sequence of open covers for X. Put Va1 = W,

and Va,, = U,, for each n € N. Then {V,}, o is a strong development for X,
and X is metrizable by [6, Theorem 5.4.2]. O

REMARK 3.2. By Example 1.2, we see the condition “X is perfect” in
(2) and (3) of Theorem 3.1 cannot be omitted, although clearly it can be
replaced with the condition that I(X) is an F,-set.

DEFINITION 3.3. Let B = |J,cy Bi be a base for space X. B is called o-
locally finite at non-isolated points, if for every i € N, B; is locally finite at
non-isolated points for X.

Similarly, we can define the notion of spaces with a o-discrete base at
non-isolated points.

DEFINITION 3.4. Let B be a family of subsets of X. For every z € X,
B is called hereditarily closure-preserving at x if, for any H(B) C B € B,

v € U{H(B): BeB}, then x € U{H(B): Be B}. Bis called a heredi-
tarily closure-preserving collection for X if, for every x € X, B is hereditarily
closure-preserving at z.

It is easy to verify that a collection is hereditarily closure preserving if
and only if it is hereditarily closure preserving at non-isolated points.

LEMMA 3.5. Let B be locally finite at non-isolated points for X. Then B
18 hereditarily closure-preserving.
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PRrROOF. Let B={B,: a € T'}. For every a € T, choose H, C B,. We
can assume z € X — I and denote H = {Hqa},p. If 2 € UK, then there ex-
ists an open neighborhood U(x) of z such that the set of all members of
{Ha} yer that meet U(z) is finite because {Ha},r is locally finite at non-
isolated points. we denote these finite elements by H,,, Ha,, ..., H,,,. Since

UH =U(H —{Ha, : i Sn}) UU{H,, : i <n}, and

U(x)N (U (H = {Ha, : i Sn})) =0,

we have x € U{H,, : i < n}. Hence z € UH. O

LEMMA 3.6 [5]. A regular space X is metrizable if and only if X has a
o-hereditarily closure-preserving base.

LEMMA 3.7. Let X be a reqular space. Then the following conditions are
equivalent:

(1) X is metrizable;
(2) X has a base which is o-discrete at non-isolated points;
(3) X has a base which is o-locally finite at non-isolated points.

PROOF. It is easy to see by Theorem 1.1, Lemmas 3.5 and 3.6 O

Let X be a topological space and 7(X) its topology. g : N x X — 7(X)
is called a g-function if, for any x € X and n € N, x € g(n,z). A space X is
called a (-space [11] if there exists a g-function such that, for every x € X
and sequence {z,} in X, if x € g(n,z,) for each n € N, then {z,} has a
cluster point in X. Obviously every developable space is a (-space.

THEOREM 3.8. A space X is metrizable if and only if X is a B-space
with a reqular base at non-isolated points.

PRrOOF. We only need to prove the sufficiency. Let X be a S-space with a
regular base at non-isolated points. By Theorem 3.1, it suffices to prove that
I(X) is an Fi,-set. Suppose g is a g-function satisfying the above definition of
B-spaces. Since X has a regular base at non-isolated points, X has a regular
base at non-isolated points B = (UneN Bn) UZ(X) satisfying Lemma 2.5,

where B, is locally finite at non-isolated points and B,,+1 UZ(X) refines B,, U
Z(X) for each n € N. For each n € Nand z € X — I, put

b(n,z) =N{B € B, : z € B}.

Then {b(n, :z)}n is a local base for x € X — I. For each n € N, put

eN

h(n,z) = (ﬁ{g(i,x): iin})ﬂb(n,x), reX -1,
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H, =U{h(n,z): z€ X —I}.

Then X — I C H, and H, is an open subset for X. We next prove X — I =
ﬂneN H,. Let x € ﬂneN H,,. Then there exists some point z,, € X — I such
that = € h(n,xz,) for each n € N. Since X is a f(-space and z € g(n,x,),
{z,} has a cluster point in X. Let y be a cluster point of {x,}. Then
y € X — I and b(n,y) is an open neighborhood of y. Without loss of general-
ity, we can assume x,, € b(i,y) for each i € N. We will show that b(i, z,,) C
b(i,y). If not, choose a point z € b(i, zn,) — b(i,y), then there exists a B € B;
such that y € B and z ¢ B. Since x,,, € b(i,y) C B, z € b(i,xy,;) C B, a con-
tradiction. Hence

v € () hng,an,) C ()b, zn,) € () b(i,y) = {y},

ieN 1€EN 1€EN

ie,z=yc X —1I Thus X —I=(),cyHn, and I is an Fy-set for X. By
Theorem 3.1, X is metrizable. O

REMARK 3.9. The Stone—Cech compactification AN of N is a S3-space,
but it is not a perfect space [6, Corollary 3.6.15]; Sorgenfrey line is a perfect
space, but it is not a -space [11, Example 4.4]. Hence, Theorem 3.1 and
Theorem 3.8 are independent each other.

4. Relations with generalized metrizable spaces

DEFINITION 4.1 [14]. Let X be a topological space and let A be a subset
of X. The discretization of X by A is the space whose topology is generated
by the base {U : U is an open subset of X} U {{z}: z € A}. It is denoted
by X4 in [6, Example 5.1.22]. We say that a space Y is a discretization of X
ifY = X4 for some A C X.

THEOREM 4.2. Let X be a metric space. If A C X and X 4 is the dis-
cretization of X by A, then X4 has a reqular base at non-isolated points.

PROOF. Since X is a metric space, X has a regular base B;. Let B =
B U {{a:} txT € A}. Obviously, B is a regular base at non-isolated points
for X 4. O

REMARK 4.3. If a space X with a regular base at non-isolated points,
then is it a discretizable space of a metric space? The answer is negative,
see Example 4.4. Recall that X is said to have a Gs-diagonal if there exists
a sequence {Up}, oy of open covers such that {x} =, oy st (x,Uy) for every
reX.
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EXAMPLE 4.4. There exists a space Y having a regular base at non-
isolated points. However, Y is not a discretization of a metric space.

Let X be the Michael line in Example 1.2, and denote it by Xg. Let
X* be a copy of Xp and f: Xp — X* a homeomorphic map. Put Z =
Xp@ X* and let g: Z — Y be a quotient map by identifying {a:, f(a:)} to
a point for each x € Xp\ B in Z. Then Y is a quotient space.

By [16], it is easy to see Y has no Gs-diagonal. Since the discretization
of a metric space has a Gg-diagonal, Y is not a discretization of a metric
space. We next prove that Y has a regular base at non-isolated points.

Put Z = {{z} : z € B} and let B be a regular base of I with the Eu-
clidean topology. Then BUZ is a regular base at non-isolated points for
Xp. Hence f(B)U f(Z) is a regular base at non-isolated points for X*.
Then G = {g(BUf(B)) : Be B} UZU f(Z) is aregular base at non-isolated
points for Y.

Indeed, it is easy to see that G is a base for Y. For every y € Y — I(Y')

and each open neighborhood U of y in Y, there exists a point z € Xp such
that g(z) = y. Then g( f(z)) =y, and z, f(z) € g~ (U). Since

By =BU f(B)UZU f(I)

is a regular base at non-isolated points for Z, there exist open neighborhoods
Vi, Vi) C g Y(U) of z, f(z) in Z respectively such that the set of all mem-

bers of By that meet V,, and Z — g~ 1(U) is finite, and the set of all members of
By that meet Vy(,) and Z — g~ 1(U) is also finite. Since f is a homeomorphic

map, there exists a B € B such that x € B C V; and f(x) € f(B) C V().
Then g(z) =y € g(BU f(B)) C U. Since the set of all members of By that
meet BU f(B) and Z — g~ '(U) is finite. If V € By, then g~ '(g(V)) =V,
hence the set of all members of G that meet g( BU f(B)) and Y — U is finite.
Thus Y has a regular base at non-isolated points.

DEFINITION 4.5 [14]. An ortho-base B for X is a base of X such that
either NA is open in X or NA = {z} ¢ Z(X) and A is a neighborhood base
at x in X for each A C B. A space X is a proto-metrizable space if it is a
paracompact space with an ortho-base.

Recall that a space X is called a vy-space if there exists a g-function
g(n,z) for X satisfying for each € X and sequences {z,}, {yn} if x, €
g(n,y,) and y, € g(n,x) for each n € N, then z,, — =.

THEOREM 4.6. If a space X has a regular base at non-isolated points,
then X is:

(1) a proto-metrizable space, and

(2) a y-space.
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PROOF. (1) By Lemma 2.6 and Theorem 2.7, X is a paracompact space.
Also, X has an ortho-base by [7, Theorem 3.4]. Hence X is a proto-
metrizable space.

(2) To prove part (2), for each n € N and z € X define a function g :
N x X — 7(X) as follows: if x € I, then g(n,z) = {z}; if z € X — I, then
g(n,z) = b(n,z), where b(n,z) is the same as in the proof in Theorem 3.8.
Then {g(n, x)}neN is a decreasing and open neighborhood base of x, and if

y € g(n,z), then g(n,y) C g(n,x). For each z € X and sequences {z,}, {yn},
if z, € g(n,yn) and y,, € g(n,x) for each n € N, then x,, € g(n,y,) C g(n,x),
thus x,, — . Hence X is a y-space. U

EXAMPLE 4.7. There exists a proto-metrizable space which has no reg-
ular base at non-isolated points.

The proto-metrizable but non-y-space described in Section 3 in [9] works.

REMARK 4.8. From the discussion above, it can be seen that spaces with
a regular base at non-isolated points are strictly between the discretizations
of metrizable spaces and proto-metrizable spaces.

COROLLARY 4.9. Let X have a Ggs-diagonal. Then the following condi-
tions are equivalent:

(1) X is a discretizations of a metrizable space;
(2) X has a regular base at non-isolated points;

(3) X is a proto-metrizable space.

PRrROOF. By Theorems 4.2 and 4.6, we have (1) = (2) = (3). By [9, The-
orem 3.1], it can be obtained (3) = (1). O

The condition “Gs-diagonal” cannot be omitted in Corollary 4.9 by Ex-
ample 4.4.

QUESTION 4.10. Under what conditions a proto-metrizable space has a
reqular base at mon-isolated points?

REMARK 4.11. Since a proto-metrizable space is a paracompact space,
Theorem 2.8 is an answer for Question 4.10. However, we expect a simpler
answer.

DEFINITION 4.12. Let B be a base of a space X. B is point-reqular
[1] (point-regular at non-isolated points [7], resp.) for X, if for each (non-
isolated, resp.) point z € X and x € U with U open in X, {B€B:
x € B ¢ U} is finite.

Obviously, every regular base at non-isolated points is a point-regular
base at non-isolated points. In [7], it is proved that a space X has a point-
regular base at non-isolated points if and only if X is an open, boundary-
compact image of a metric space. On the other hand, a space X is an open,
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boundary-compact, s-image of a metric space if and only if X has a point-
countable base which is point-regular at non-isolated points. The following
question is posed in [7, Question 5.1]:

QUESTION 4.13 (see [7, Question 5.1]). Let a space X have a point-
countable base. If X has a point-reqular base at nos-isolated points, is X an
open, boundary-compact, s-image of a metric space?

Next, we give an affirmative answer for Question 4.13.
A space X is called metalindelof if every open cover of X has a point-
countable open refinement.
THEOREM 4.14. The following are equivalent for a space X :
(1) X has a point-countable base, and has a point-regular base at non-
isolated points;
(2) X has a point-countable base which is point-reqular at non-isolated
points;
(3) X is an open boundary-compact, s-image of a metric space;

(4) X is an open s-image of a metric space, and is an open boundary-
compact image of a metric space;

(5) X is a metalindeldf space with a point-reqular base at non-isolated
points.

PROOF. It is proved in [7] that if P is a point-regular base at non-isolated
points for a space X, then we can assume that P = |,y Pn satisfies the
following conditions:

(a) P, is an open cover and is point-finite at non-isolated points;

(b) {Pn} is a development at non-isolated points for X.

(1) = (2). Suppose that X has a point-countable base B, and suppose
that X has a point-regular base at non-isolated points P. We can assume
that P = (J,,c Pn satisfies the conditions (a) and (b). For each n € N, put

B={BeB: B¢IX)};
Vn(B)={PeP,: BCP}, VBeb,

P=U{BeB :PcV,(B)}, VPePy
P,={P: PcP,}

Then P, is point-countable. In fact, if z € P € P, then there is B’ € B’
such that z € B’ and P € V,(B’). Since {B € B': x € B} is countable, and
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each V,(B) is finite for each B € B’ by the condition (a), it follows that
{P €Vy(B): z € Be B} is countable.

Put
P = < U Pn> UZ(X).

neN

Then P is point-countable. If x € U — I with U open in X, then there is
m € N such that € st (z, Py,) C U by the condition (b). Take P € P,, with
x € P, then there is B € B’ such that z € B C P, thus P € V,,,(B), and x €

BcPcPcU. SoP is a base for X. Finally, it is easy to see that Pis

point-regular at non-isolated points by P C P for each P € P.

(2) = (3) by [7, Corollary, 3.2]. (3) = (4) is obvious. And (4) = (5) by
[7, Theorem, 3.1].

(5) = (1). Let X be a metalindelof space with a point-regular base at
non-isolated points. As in the proof of (1) = (2), there is a sequence {P,}
of open covers of X such that {P,} is a development at non-isolated points
for X. For each n € N, let B, be a point-countable open refinement of P,.

And put
B= ( U Bn> UZ(X).

neN

Then B is a point-countable base for X. In fact, if a non-isolated point
x € U with U open in X, then there is n € N such that st (z, P,) C U. Take
B € B, with « € B, then z € B C st (x,B,) C st (z,P,) C U. O

By Theorem 4.14, the following is obtained.

COROLLARY 4.15. Every space with a regular base at non-isolated points
has a point-countable base.
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