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ON DISCRETE SPACES AND AP-SPACES
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Abstract. In this paper, it is proved that a space Y is discrete if and only

if every sequentially quotient mapping onto Y is bi-quotient (weak-open).

Also, we discuss AP-spaces which are important generalizations of Fréchet-

Urysohn spaces. We give a new characterization of AP-spaces and prove

that every space is an almost-open image of some AP-space.

1. Introduction

It is well-known that mappings are powerful tools in characterizing topological
spaces. There are many classic results on mappings and spaces. For example, J. R.
Boone and F. Siwiec [4] have shown that a space Y is sequential (resp. Fréchet-
Urysohn, strongly Fréchet-Urysohn) if and only if every sequentially quotient
mapping onto Y is quotient (resp. pseudo-open, countably bi-quotient). Recently,
M. Sakai discussed spaces Y with the property: every sequence-covering mapping
onto Y is bi-quotient (weak-open) in [16] [17]. We are wondering about what
will happen if we replace sequence-covering mappings by sequentially quotient
mappings. In section 2, we shall prove that such spaces are all discrete.

AP-spaces are important generalizations of Fréchet-Urysohn spaces, for their
interesting applications in categorical topology and function spaces [19]. AP-
spaces can be characterized to be spaces Y with the property: every quotient
mapping onto Y is pseudo-open. The systemical study of AP-spaces appeared in
[5] and [19]. In the past years, AP-spaces have been defined in different forms
and have many different names, such as, accessibility spaces [20], Whyburn spaces
[14]. For a brief history, see [15]. But we also find a new characterization of them
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in section 3. Also we prove that every space can be an almost-open image of some
AP-space. This sheds a light of solution to the open problem that whether open
mappings preserve the AP-spaces [19].

In this paper all spaces are Hausdorff and all mappings are continuous. By
R,N, we denote the set of real numbers and positive integers, respectively. For a
space X, we denote the topology of X by τ(X). We recall some basic definitions.

Definition 1.1. [7] Let X be a space. P ⊂ X is called a sequential neighborhood
of x in X, if each sequence converging to x ∈ X is eventually in P . A subset
U of X is called sequentially open if U is a sequential neighborhood of each of
its points. X is called a sequential space if each sequentially open subset of X is
open.

Definition 1.2. Let P =
⋃
x∈X Px be a cover of a space X. P is called a weak-

base [3] for X if it satisfies (a) for each x ∈ X and U, V ∈ Px, there is a W ∈ Px
such that W ⊂ U∩V ; (b) for each x ∈ X, Px is a network of x in X, i.e., x ∈ ∩Px,
and if x ∈ U with U open in X, then x ∈ P ⊂ U for some P ∈ Px; (c) whenever
G ⊂ X satisfies that for each x ∈ G there is P ∈ Px with P ⊂ G, G is open in X.

For a space, it is obvious that any base is a weak-base. And if P =
⋃
x∈X Px is

a weak-base for a space X, then any element of Px is a sequential neighborhood
of x for each x ∈ X.

Definition 1.3. Let f : X → Y be a mapping.
(1) f is called to be quotient [6] if in case f−1(U) is an open subset of X then

U is an open subset of Y ;
(2) f is called to be sequentially quotient [4] if in case L is a convergent sequence

in Y then there is a convergent sequence S in X such that f(S) is a subsequence
of L;

(3) f is called to be sequence-covering [18] if whenever {yn} is a convergent
sequence in Y there is a convergent sequence {xn} in X with xn ∈ f−1(yn) for
each n ∈ N;

(4) f is called to be pseudo-open [2] if for each y ∈ Y and an open subset
U ⊂ X with f−1(y) ⊂ U , then y ∈ Int(f(U));

(5) f is called to be bi-quotient [11, 12] if for each y ∈ Y and a family U of
open subsets of X with f−1(y) ⊂ ∪{U : U ∈ U}, there exists a finite subfamily
F of U such that y ∈ Int(∪{f(U) : U ∈ F});

(6) f is called to be almost-open [1] if there exists a point xy ∈ f−1(y) for each
y ∈ Y such that for each open neighborhood U of xy, f(U) is a neighborhood of
y.
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(7) f is called to be weak-open [8, 21] if there exist a weak-base P =
⋃
y∈Y Py for

Y and a point xy ∈ f−1(y) for each y ∈ Y such that for each open neighborhood
U of xy, f(U) contains some element of Py.

Remark 1.4. The following implications hold.
(1) open ⇒ almost-open ⇒ bi-quotient ⇒ pseudo-open ⇒ quotient;
(2) almost open ⇒ weak-open ⇒ quotient.

Readers may refer to [6] for unstated definitions and terminology.

2. On sequentially quotient mappings and discrete spaces

Lemma 2.1. [17] For a space Y , the following are equivalent.
(1) Every sequence-covering mapping onto Y is bi-quotient;
(2) Every non-isolated point of Y has an open neighborhood which is a non-

trivial convergent sequence.

A collection C of subsets of an infinite set is said to be almost disjoint if A∩B
is finite whenever A 6= B ∈ C. Take an infinite maximal almost disjoint collection
A consisting of infinite subsets of N. Then |A| > ω [10]. The Isbell-Mrówka space
ψ(N) [13] is the set A ∪ N endowed with a topology as follows: The points of
N are isolated. Basic neighborhoods of a point A ∈ A are the sets of the form
{A} ∪ (A− F ), where F is a finite subset of N.

Theorem 2.2. For a space Y , the following are equivalent.
(1) Y is discrete;
(2) Every sequentially quotient mapping onto Y is bi-quotient;
(3) Every sequentially quotient mapping onto Y is open.

Proof. (1)⇒(3)⇒(2) is obvious. We now prove (2)⇒(1).
Suppose that Y has a non-isolated point y. By Lemma 2.1, there exists a

non-trivial sequence {yn} converging to y such that K = {y}∪ {yn : n ∈ N} is an
open subset of Y . Then we have Y = K

⊕
(Y −K). Let ψ(N) = A ∪ N be the

Isbell-Mrówka space and X = ψ(N)
⊕

(Y −K). Define f : X → Y as

f(x) =


y, if x = A ∈ A,
yn, if x = n ∈ N,
x, if x ∈ Y −K.

Obviously f is continuous. Also, we have the following claims.
Claim 1. f is sequentially quotient.
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Suppose that L is a convergent sequence in Y . Without loss of generality, we
can assume that L converges to y and L ⊂ K. Denote L = {ynk

}k∈N. Since A is
a maximal almost disjoint collection, there is an A ∈ A such that A∩{nk : k ∈ N}
is infinite. It is easy to see that A ∩ {nk : k ∈ N} is a sequence converging to
A ∈ A in X and f(A ∩ {nk : k ∈ N}) is a subsequence of L. Therefore f is
sequentially quotient.

Claim 2. f is not bi-quotient.
Suppose f is bi-quotient. Since {A} ∪A is open in X for each A ∈ A and

f−1(y) ⊂ ∪{{A} ∪A : A ∈ A},

there is a finite F ⊂ A such that

y ∈ Intf(∪{{A} ∪A : A ∈ F}) = Int({y} ∪ f(∪F)).

So N− ∪F is finite. Since A is uncountable, we can pick a B ∈ A− F . Then

N− ∪F ⊃ B − ∪F = B − ∪{B ∩A : A ∈ F}

is infinite. This contradiction shows that f is not bi-quotient. �

Lemma 2.3. [16] For a space Y , the following are equivalent.
(1) Every sequence-covering mapping onto Y is weak-open;
(2) Y is sequential and for each y ∈ Y , there exists a sequence Ly converging

to y such that for any sequence L converging to y, L− Ly is finite.

Theorem 2.4. For a space Y , the following are equivalent.
(1) Y is discrete;
(2) Every sequentially quotient mapping onto Y is weak-open.

Proof. (1)⇒(2) is obvious. We now prove (2)⇒(1).
By Lemma 2.3, Y is sequential. So we only need to show that Y has no non-

trivial convergent sequences. Suppose that Y has a non-trivial sequence {yn}
converging to y. By Lemma 2.3, we may assume that K = {y}∪{yn : n ∈ N} is a
sequential neighborhood of y. Take an infinite maximal almost disjoint collection
A consisting of infinite subsets of {yn : n ∈ N}. For each x ∈ Y − {y}, put
Bx = {B ∈ τ(Y ) : B ∩K ⊂ {x}}. Put X = A∪ (Y −{y}) and endow X with the
topology as follows: for each x ∈ Y − {y}, take Bx as a neighborhood base of x;
for each A ∈ A, take

{{A} ∪
⋃
x∈A′

Bx : Bx ∈ Bx, A′ ⊂ A and A−A′ is finite}
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as a neighborhood base of A. Define f : X → Y as

f(x) =
{
y, if x ∈ A,
x, if x ∈ Y − {y}.

Claim 1. f is continuous.
Obviously f is continuous at each x ∈ Y − {y}. Suppose A ∈ A and U is an

open neighborhood of y in Y . There is an n0 such that {yn : n ≥ n0} ⊂ U . Also
for each n ≥ n0, there is a Byn ∈ Byn such that Byn ⊂ U . Put

V = {A} ∪ (∪{Byn : n ≥ n0, yn ∈ A}).

Then V is an open neighborhood of A and f(V ) ⊂ U .
Claim 2. f is sequentially quotient.
Suppose that L is a convergent sequence in Y . Without loss of generality, we

can assume that L converges to y and L ⊂ K. Since A is a maximal almost
disjoint collection, there is an A ∈ A such that A ∩ L is infinite. So A ∩ L is a
sequence converging to A ∈ A in X and f(A∩L) is a subsequence of L. Therefore
f is sequentially quotient.

Claim 3. f is not weak-open.
For each A ∈ A, it is easy to see that K −A is infinite. Pick any Bx ∈ Bx for

each x ∈ A. Then U = {A} ∪
⋃
x∈ABx is an open neighborhood of A but f(U)

cannot to be a sequential neighborhood of y. Therefore f is not weak-open. �

3. On AP-spaces

A space X is called to be an AP-space [19] (called accessibility space in [20])
if for any non-closed subset A ⊂ X and x ∈ A − A there is an almost closed
subset F ⊂ A which converges to x, where by the almost closed set F converging
to x we understand F − F = {x}. Any subspace of an AP-space is AP and the
ordinal space ω1 + 1 is not AP [19]. In [20], the author proved that a space X is
an AP-space if and only if every quotient mapping onto X is pseudo-open. Now
we obtain a new characterization of AP-spaces.

Recall that a space X is determined [9] by a cover P if U ⊂ X is open in X if
and only if U ∩ P is relatively open in P for every P ∈ P. For each x ∈ X and a
family P of subset of X, we denote st(x,P) = ∪{P ∈ P : x ∈ P}.

Theorem 3.1. For a regular space Y , the following are equivalent.
(1) Y is an AP-space;
(2) Every quotient mapping onto Y is pseudo-open;
(3) If Y is determined by a cover P, then y ∈ Int(st(y,P)) for each y ∈ Y .
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Proof. The equivalence of (1) and (2) is due to Whyburn [20].
(2)⇒(3). Suppose Y is determined by a cover P = {Pα : α < κ}. Put

X =
⊕

α<κ Pα and let f : X → Y be the natural mapping. Then f is quotient,
and thus pseudo-open. For each y ∈ Y , {Pα : y ∈ Pα} is a family of open subsets of
X and {Pα : y ∈ Pα} covers f−1(y). So y ∈ Intf(∪{Pα : y ∈ Pα}) = Int(st(y,P)).

(3)⇒(2). Suppose f : X → Y is a quotient mapping. For each y ∈ Y and
an open subset U ⊂ X, if f−1(y) ⊂ U , then U = {U,X − f−1(y)} is an open
cover of X. So X is determined by U . By [9, Lemma 1.7], Y is determined
by f(U) = {f(U), Y − {y}}. Therefore y ∈ Int(st(y, f(U))) = Int(f(U)), which
shows that f is pseudo-open. �

Put Xd = {x : x is a non-isolated point of X} for a space X.

Proposition 3.2. For a regular space X, if Xd is discrete, then X is an AP-space.

Proof. Suppose x ∈ A−A. Since Xd is discrete, there is an open neighborhood
U of x such that U ∩ Xd = {x}. Put F = U ∩ A. It is easy to verify that
F − F = {x}. Therefore, X is an AP-space. �

It is well-known that AP-spaces are preserved by closed mappings [19]. And
whether AP-spaces are preserved by open mappings is still an open problem [19].
The following corollary shows that AP-spaces are not always preserved by almost-
open mappings.

Corollary 3.3. Every space is an almost-open image of an AP-space.

Proof. For any space X and each x ∈ X, put Xx = X and endow Xx with the
topology as follows: all points but x are isolated and take {U : x ∈ U ∈ τ(X)}
as a neighborhood base of x. Then Y =

⊕
x∈X Xx is a regular space and Y d is

discrete. By Proposition 3.2, Y is an AP-space. Let f : Y → X be the natural
mapping. Obviously f is almost-open. The proof is finished. �

The authors would like to thank the referee for his/her valuable suggestions
and constructive comments, which led to a much better presentation of this paper.
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[1] A. V. Arhangel’skǐı, On open and almost open mappings of topological spaces(in Russian),

Dokl. Akad. Nauk. SSSR, 147 (1962), 999–1002.
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