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Abstract: In this paper, some topological properties which are preserved by finite subsequence-
covering maps are discussed, and an example is provided to answer the following questions: (1)
Is every l-sequentially quotient map sequence-covering? (2) Is every open map of a sequen-
tial space 1-sequence-covering? (3) Does not every LSC set-valued map from zero-dimensional
paracompct spaces to a Lasnev space h:_ave continuous selection?
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1 Definitions

It is well known that first countability is preserved by open continuous maps. The following
question was posed by Y. Tanakal'?: Is g-first countability preserved by open continuous maps?
It is an interesting question what maps preserve g-first countability. In recent years, sequence-
covering maps arouse attention and new developments about them are witnessed!®. In this
paper, some relationships among sequence-covering maps are discussed. Throughout this paper,
all spaces are T5, all maps are continuous and onto.

Let us recall some definitions of sequence-covering maps.

Definition 1 Let f: X — Y be a map. f is sequence-covering!'!l if whenever {y,} is a
convergent sequence in Y there is a convergent sequence {z,} in X with each z, € f~(yn); f
is sequentially quotient'?) if whenever {y,} is a convergent sequence in Y there is a convergent
sequence {zx} in X with each z € f~'(yn,); f is I-sequence-covering® if for each y € Y there
is £ € f~'(y) such that whenever {y,} is a sequence converging to y in Y there is a sequence
{xn} converging to z in X with each z, € f~(yn); f is I-sequentially quotient® if for each
y € Y there is ¢ € f~!(y) such that whenever {y,} is a sequence converging to v in Y there is a
sequence {zx} converging to z in X with each zx € f~1(yn,); f is pseudo sequence-covering®! if
whenever S is a convergent sequence(containing limit point) in Y there is a compact subset L in
X such that f(L) = S; f is finite subsequence-covering!*l if for each y € Y there is a finite subset
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K of f~1(y) such that for any sequence S converging to y, there exists a sequence L converging
to some point in K and f(L) is a subsequence of S.
It is obvious that
1-sequentially quotient maps — finite subsequence-covering maps

7 ™~

1-sequence-covering maps —» sequence-covering maps —» sequentially quotient maps

S

pseudo sequence-covering maps.

Definition 2 Let P = Uze x Pz be a cover of a space X such that for each x € X,

(a) P, is a network of z in X;

(b) f U,V € Py, then W CUNYV for some W € P,.

P is called a weak base!!l for X if whenever G C X satisfying for each z € G there is P € P,
with P C G, then G is open in X; P is called an sn-network® for X if each element of P, is a
sequential neighborhood of z in X for each z € X. Let P = [J, . x P: be a weak base(resp. an
sn-network) defined the above-mentioned. Each P, is called a local weak base(resp. a local sn-
network) at z. A space X is called a g-first countable space(resp. an sn-first countable space) if X
has a weak base(resp. an sn-network) such that the local weak base(resp. the local sn-network)
of each point in X is a countable family.

Definition 3 Let P be a collection of subsets of a space X. P is called a k-network® if
for every compact subset K and a neighborhood V of K in X there exists a finite subset F of P
such that K C | JF C V.

A regular space with a o-locally finite k-network(resp. sn-network, weak base) is called an
R-space(resp. sn-metrizable space, g-metrizable space). HCP means a family which is heredi-
tarily closure-preserving. For an infinite cardinal o, S, is the quotient space obtained from the
topological sum of a many non-trivial convergent sequences by identifying all the limit points to
a single point.

It is known that for regular spaces!3 13,

metrizable spaces =2  N-spaces + first countable spaces

|

g-metrizable spaces === N-spaces + g-first countable spaces

sn-metrizable spaces m=—f= N-spaces + sn-first countable spaces

|

N-spaces m=—=2  ¢-HCP k-networks + no any (closed) copy of S,

2 Properties of Finite Subsequence-covering Maps

In this section, some properties of sequence-covering maps are discussed. It is-our main
interests what topological spaces are preserved by finite subsequence-covering maps.

Theorem 4 sn-first countability is preserved by finite subsequence-covering maps.
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Proof Let f: X — Y be a finite subsequence-covering map and X be an sn-first countable
space. Let P, be a countable local sn-network at each point z € X. Without loss of generality,
denote Py by {Prn}nez, with every Py i1 C Py n. For each y € Y there is a finite subset
K = {x1,22, - ,xx} of f~1(y) which satisfies the condition of finite subsequence-covering maps
in Definition 1. Let Qy = {f(Bn)}ne z,, here each Bn = ;<4 Po;pn-

Next we will prove that Q, is a countable local sn-network at y € Y from (1) and (2) as
follows.

(1) Qy is a network of y in Y. Obviously, y € () Q. For any open set U with y € U and
1 <4<k, f7}(U) is an open neighborhood of z; in X, thus z; € Py, », C f~}(U) for some
n; € Z,. Take m = max{n; : 1 <i < k}, then By, C f~}(U), therefore f(B,) C U.

(2) Every f(Bm) is a sequential neighborhood of y in Y. If not, there exists a sequence {y,}
in Y converging to y and each y,, & f(Bn,). There is a sequence {z;} in X converging to some
point in K such that {f(z;)} is a subsequence of {y,} because f is finite subsequence-covering.
We can assume that all z; € By, because By, is a sequential neighborhood of K in X. Thus all
f(z;) € f(Bm), a contradiction with each y, ¢ f(Bm).

Hence, Y is an sn-first countable space.

Corollary 5 A space is an sn-first countable space if and only if it is a finite subsequence-
covering image of a metric space.

Proof It is known that a space is an sn-first countable space if and only if it is a 1-
sequence-covering image of a metric spacel®. The corollary holds by Theorem 4.

Corollary 6 g-first countability is preserved by finite subsequence-covering and quotient
maps.

Proof It is known that a space is g-first countable if and only if it is a sequential space
and an sn-first countable space®l. Let f: X — Y be a finite subsequence-covering and quotient
map with X g-first countable. Y is an sn-first countable space by Theorem 4. On the other
hand, Y is a sequential space since sequential spaces are preserved by quotient maps. So Y is a
g-first countable space.

Theorem 4 and its corollaries are some finer results since there are a metric space M and
a sequence-covering and quotient map f : X — Y such that Y is not sn-first countable by [6,
Example 3.4.7(7)].

All spaces in the final of this section are assumed to be regular, and we shall further discuss
some topological properties which are preserved by finite subsequence-covering maps. A question
posed by Gul®! whether N-spaces are preserved by 1-sequentially quotient and closed maps is
affirmatively answered by Theorem 7.

Theorem 7 N-spaces are preserved by finite subsequence-covering and closed maps.

Proof Let f: X — Y be a finite subsequence-covering and closed map, here X is an
N-space. Since f is closed, Y has a 0-HCP k-network!'®. If Y is not an R-space, ¥ has a
closed subspace Y; which is homeomorphic to S,,. Let ¥; = {t} U (,«,, Ta), here the family
{Tw}a<w, is disjoint and each T, is a non-trivial sequence converging to ¢ in Y. Since f is finite

subsequence-covering, there is a finite subset K C f~!(t) such that whenever T is a sequence
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converging to ¢ in Y there is a sequence L converging to a point | € K in X such that f(L) is a
subsequence of T. For each o < w; there is a sequence L, converging to [, € K such that f(Lq)
is a subsequence of the sequence T,. Since K ‘s finite, without losing generality, suppose that
all lo =1 € K, and let X; = {I} U (Uy<., La)- Then X; is homeomorphic to S,,. In fact, it is
obvious that the family {Lq}a<.w, is disjoint. Since each point of T, is isolated in Y}, each point
of L, is also isolated in X;. For each o < w; and each finite subset Fj, of Lq, then {f(Fy)}a<w,
is discrete in Y. By the continuity of f, {F,}a<, is discrete in X. Thus the subspace X; of X
is homeomorphic to S,,, a contradiction with R-spaces. Therefore, Y is an R-space.

Corollary 8 sn-metrizability, g-metfizability or metrizability is preserved by finite sub
-sequence-covering and closed maps.

Proof sn-metrizability is preserved by finite subsequence-covering and closed maps from
Theorems 4 and 7. g-metrizability is preserved by finite subsequence-covering and closed maps
from Theorem 7 and Corollary 6. Since every first countable space is equivalent to a g-first
countable and Fréchet spdcelﬁ], and each Fréchet space is preserved by a closed map, metrizability
is preserved by finite subsequence-covering and closed maps.

Corollary 9 Spaces with a point-countable base are preserved by finite subsequence-
covering and closed maps.

Proof It has been proved that a space with a point-countable base is equivalent to a
first countable space with a point-countable k-networkl6:Corollary2.1.7] - Jet f: X Y be a
finite subsequence-covering and closed map, here X has a point-countable base. Then Y is a
g-first countable, Fréchet space, thus Y is a first countable space. On the other hand, Y has a
point-countable k-network by [7, Theorem 5]. Hence, Y has a point-countable base.

Remark 10 Some related results are generalized by finite subsequence-covering maps. For
example,

) sn-first countability is preserved by 1-sequentially quotient maps(®!;

3) g-metrizability is preserved by finite subsequence-covering and closed maps!1;

(1

(2) g-first countability is preserved by 1-sequence-covering and quotient maps!®;
(

(4) Spaces with a point-countable base are preserved by open and closed maps!.
Question 11 Are spaces with a point-countable weak base preserved by finite-to-one and

closed maps?

3 Examples

There are two questions about sequence-covering maps as follows.
Question 12 (1) Is every 1-sequentially quotient map sequence-covering!® Question2]?
(2) Is every open map of a sequential space 1-sequence-coveringlt4 Question3.9]7

In this section the questions are negatively answered by the following example. It is proved
that let f: X — Y be an open map with X first countable, then f is 1-sequence-covering!*4l.
Example 13 Let Y = {% : n € Z, }|J{0} endow usual subspace topology of real line R.

There are a closed image X of a metric space and a map f: X — Y such that
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(1) f is 1-sequentially quotient;

(2) f is open;

(3) f is not pseudo sequence-covering.

In fact, a family D of subsets of Y'\ {0} is said to be almost disjoint if ANB is finite whenever
A,B € D, A # B. Using Zorn’s Lemma, there exists a family 4 of infinite subsets of Y \ {0}
such that .A is a almost disjoint family and maximal with respect to these properties. Then A4
must be uncountable and denote it by {A, : & € A}. For each a € A, put B, = {04} U A, with
subspace topology of Y. Define M = @qc4Ba,, and let X be the quotient space M/{04 : a € A}.
Then X is the closed image of metric space M, and so it is a Fréchet space and homeomorphic
to Sj4). Define a map f: X — Y satisfying each f|p, is natural map.

(1) f is a l-sequentially quotient map. First, f is continuous. For each y € Y \ {0},
f~Hy) = ®{y : y € Aa} is an open and closed subspace of X. If U is a neighborhood of 0 in
Y, then B, \ f71(U) is finite for each o € A, thus f~!(U) is open in X. Now, let {y,} be a
non-trivial convergent sequence in Y. Then y, — 0. Put S = {y, : n € Z;}\ {0}. Since A is a
almost disjoint and maximal family of Y\ {0}, there is o € A such that SN A, is infinite, i.e.,
there is a sequence {xx } converging to 0 in X with each zx € f~*(yn, ). Hence, f is 1-sequentially
quotient.

(2) f is an open map. If not, there is an open set V in X such that f(V) is not open in
Y. Then0 € V. Put L =Y \ f(V), then L is infinite. For each a € A, f|p, : Ba — f(Ba)
is one-to-one, so LN A, = f(Aa \ V) is finite. Hence, L ¢ A and AU {L} is almost disjoint, a
contradiction.

(3) f is not a pseudo sequence-covering map. If not, there exists a compact subset K of
X such that f(K) =Y. Since X is homeomorphic to S|4, there is a finite subset F' of A such
that K C Uyep Ba, thus Y\ {0} = Uycr Aa- Take B € A\ F, then Ay = AgN (Y \ {0}) =
User(As N Ag) is finite, a contradiction.

Example 14 There is a metric space X and a finite subsequence-covering and finite-to-one
map f: X — Y such that

(1) f is not 1-sequentially quotient;

(2) f is not sequence-covering;

(3) Y has no any point-countable weak base.

Let X be the topological sum of a family {I} U{X, : & € I}, where I is the closed unit
interval, and each X, is a non-trivial convergent sequence. Let Y be the space obtained from X
by identifying the limit point of X, with a € I for each a € I. Let f : X — Y be the obvious
map. Then Y is the quotient and finite-to-one image of a locally compact metric space X under
f, and Y has no any point-countable weak basel”> Remark14] Tt is easy to check that f is a finite
subsequence-covering map. It is also easy to check that f is neither 1-sequentially quotient nor
sequence-covering.

We know that every sequence-covering and compact map of a metric space is 1-sequence-
covering!®, and every 1-sequentially quotient map of an sn-first countable space is 1-sequence-
covering®. Hence, finite subsequence-covering maps are different from l-sequentially quotient
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maps and sequence-covering maps.

It has been shown!!® that every LSC set-valued map from zero-dimensional paracompct
spaces to a BCO space has continuous selections. A natural question is that the BCO spaces
can be replaced by stratifiable spaces or not? We give the following example which negatively
answers this question.

Example 15 Let X and Y be spaces, f : X — Y in Example 13. Define ¢ : Y — F(X) by
@(y) = f1(y) for each y € Y, then ¢ is Isc which has no continuous selection. If not, let g be a
continuous selection of ¢, then ¢g(Y') is a compact set of X, but f is not pseudo sequence-covering,

a contradiction.
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