On Finite Subsequence-covering Maps

YAN Pengfei^{1,*}, LIN Shou^{2,**}, YANG Hairong^{3,***}

(1. Dept. of Math. and Phy., Wuyi University, Jiangmen, Guangdong, 529020, P. R. China; 2. Department of Mathematics, Ningde Teachers' College, Ningde, Fujian, 352100, P. R. China; 3. Department of Mathematics, Hefei Normal University, Hefei, Anhui, 230039, P. R. China)

Abstract: In this paper, some topological properties which are preserved by finite subsequence-covering maps are discussed, and an example is provided to answer the following questions: (1) Is every 1-sequentially quotient map sequence-covering? (2) Is every open map of a sequential space 1-sequence-covering? (3) Does not every LSC set-valued map from zero-dimensional paracompct spaces to a Lasnev space have continuous selection?

Key words: finite subsequence-covering maps; sequence-covering maps; sn-first countable spaces; g-metrizable spaces; \aleph -spaces

MR(2000) Subject Classification: 54E40; 54D50; 54C10 / CLC number: O189.1 Document code: A Article ID: 1000-0917(2010)06-0651-06

1 Definitions

It is well known that first countability is preserved by open continuous maps. The following question was posed by Y. Tanaka^[12]: Is g-first countability preserved by open continuous maps? It is an interesting question what maps preserve g-first countability. In recent years, sequence-covering maps arouse attention and new developments about them are witnessed^[6]. In this paper, some relationships among sequence-covering maps are discussed. Throughout this paper, all spaces are T_2 , all maps are continuous and onto.

Let us recall some definitions of sequence-covering maps.

Definition 1 Let $f: X \to Y$ be a map. f is sequence-covering^[11] if whenever $\{y_n\}$ is a convergent sequence in Y there is a convergent sequence $\{x_n\}$ in X with each $x_n \in f^{-1}(y_n)$; f is sequentially quotient^[2] if whenever $\{y_n\}$ is a convergent sequence in Y there is a convergent sequence $\{x_k\}$ in X with each $x_k \in f^{-1}(y_{n_k})$; f is 1-sequence-covering^[6] if for each $y \in Y$ there is $x \in f^{-1}(y)$ such that whenever $\{y_n\}$ is a sequence converging to y in Y there is a sequence $\{x_n\}$ converging to x in X with each $x_n \in f^{-1}(y_n)$; f is 1-sequentially quotient^[5] if for each $y \in Y$ there is $x \in f^{-1}(y)$ such that whenever $\{y_n\}$ is a sequence converging to y in Y there is a sequence $\{x_k\}$ converging to x in X with each $x_k \in f^{-1}(y_{n_k})$; f is pseudo sequence-covering^[4] if whenever S is a convergent sequence (containing limit point) in Y there is a compact subset L in X such that f(L) = S; f is finite subsequence-covering^[10] if for each $y \in Y$ there is a finite subset

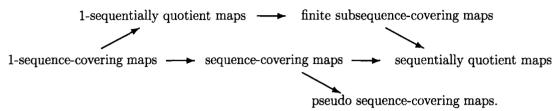
Received date: 2008-12-15.

Foundation item: Supported by NSFC(No. 10971125).

E-mail: * ypeifei@sina.com; ** linshou@public.ndptt.fj.cn; * * * murong81@163.com

K of $f^{-1}(y)$ such that for any sequence S converging to y, there exists a sequence L converging to some point in K and f(L) is a subsequence of S.

It is obvious that



Definition 2 Let $\mathcal{P} = \bigcup_{x \in X} \mathcal{P}_x$ be a cover of a space X such that for each $x \in X$,

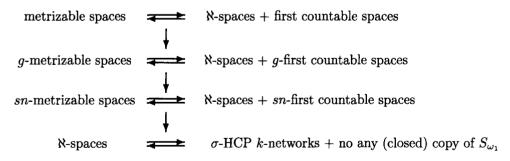
- (a) \mathcal{P}_x is a network of x in X;
- (b) If $U, V \in \mathcal{P}_x$, then $W \subset U \cap V$ for some $W \in \mathcal{P}_x$.

 \mathcal{P} is called a weak base^[1] for X if whenever $G \subset X$ satisfying for each $x \in G$ there is $P \in \mathcal{P}_x$ with $P \subset G$, then G is open in X; \mathcal{P} is called an $sn\text{-}network^{[8]}$ for X if each element of \mathcal{P}_x is a sequential neighborhood of x in X for each $x \in X$. Let $\mathcal{P} = \bigcup_{x \in X} \mathcal{P}_x$ be a weak base(resp. an sn-network) defined the above-mentioned. Each \mathcal{P}_x is called a local weak base(resp. a local sn-network) at x. A space X is called a g-first countable space(resp. an sn-first countable space) if X has a weak base(resp. an sn-network) such that the local weak base(resp. the local sn-network) of each point in X is a countable family.

Definition 3 Let \mathcal{P} be a collection of subsets of a space X. \mathcal{P} is called a k-network^[4] if for every compact subset K and a neighborhood V of K in X there exists a finite subset \mathcal{F} of \mathcal{P} such that $K \subset \bigcup \mathcal{F} \subset V$.

A regular space with a σ -locally finite k-network(resp. sn-network, weak base) is called an \aleph -space(resp. sn-metrizable space, g-metrizable space). HCP means a family which is hereditarily closure-preserving. For an infinite cardinal α , S_{α} is the quotient space obtained from the topological sum of α many non-trivial convergent sequences by identifying all the limit points to a single point.

It is known that for regular spaces^[3, 13],



2 Properties of Finite Subsequence-covering Maps

In this section, some properties of sequence-covering maps are discussed. It is our main interests what topological spaces are preserved by finite subsequence-covering maps.

Theorem 4 sn-first countability is preserved by finite subsequence-covering maps.

Proof Let $f: X \to Y$ be a finite subsequence-covering map and X be an sn-first countable space. Let \mathcal{P}_x be a countable local sn-network at each point $x \in X$. Without loss of generality, denote \mathcal{P}_x by $\{P_{x,n}\}_{n \in \mathbb{Z}_+}$ with every $P_{x,n+1} \subset P_{x,n}$. For each $y \in Y$ there is a finite subset $K = \{x_1, x_2, \dots, x_k\}$ of $f^{-1}(y)$ which satisfies the condition of finite subsequence-covering maps in Definition 1. Let $\mathcal{Q}_y = \{f(B_n)\}_{n \in \mathbb{Z}_+}$, here each $B_n = \bigcup_{i \le k} P_{x_i,n}$.

Next we will prove that Q_y is a countable local sn-network at $y \in Y$ from (1) and (2) as follows.

- (1) Q_y is a network of y in Y. Obviously, $y \in \bigcap Q_y$. For any open set U with $y \in U$ and $1 \le i \le k$, $f^{-1}(U)$ is an open neighborhood of x_i in X, thus $x_i \in P_{x_i,n_i} \subset f^{-1}(U)$ for some $n_i \in Z_+$. Take $m = \max\{n_i : 1 \le i \le k\}$, then $B_m \subset f^{-1}(U)$, therefore $f(B_m) \subset U$.
- (2) Every $f(B_m)$ is a sequential neighborhood of y in Y. If not, there exists a sequence $\{y_n\}$ in Y converging to y and each $y_n \notin f(B_m)$. There is a sequence $\{z_j\}$ in X converging to some point in K such that $\{f(z_j)\}$ is a subsequence of $\{y_n\}$ because f is finite subsequence-covering. We can assume that all $z_j \in B_m$ because B_m is a sequential neighborhood of K in X. Thus all $f(z_j) \in f(B_m)$, a contradiction with each $y_n \notin f(B_m)$.

Hence, Y is an sn-first countable space.

Corollary 5 A space is an *sn*-first countable space if and only if it is a finite subsequence-covering image of a metric space.

Proof It is known that a space is an sn-first countable space if and only if it is a 1-sequence-covering image of a metric space^[6]. The corollary holds by Theorem 4.

Corollary 6 g-first countability is preserved by finite subsequence-covering and quotient maps.

Proof It is known that a space is g-first countable if and only if it is a sequential space and an sn-first countable space [6]. Let $f: X \to Y$ be a finite subsequence-covering and quotient map with X g-first countable. Y is an sn-first countable space by Theorem 4. On the other hand, Y is a sequential space since sequential spaces are preserved by quotient maps. So Y is a g-first countable space.

Theorem 4 and its corollaries are some finer results since there are a metric space M and a sequence-covering and quotient map $f: X \to Y$ such that Y is not sn-first countable by [6, Example 3.4.7(7)].

All spaces in the final of this section are assumed to be regular, and we shall further discuss some topological properties which are preserved by finite subsequence-covering maps. A question posed by Gu^[5] whether \aleph -spaces are preserved by 1-sequentially quotient and closed maps is affirmatively answered by Theorem 7.

Theorem 7 ℵ-spaces are preserved by finite subsequence-covering and closed maps.

Proof Let $f: X \to Y$ be a finite subsequence-covering and closed map, here X is an \aleph -space. Since f is closed, Y has a σ -HCP k-network^[13]. If Y is not an \aleph -space, Y has a closed subspace Y_t which is homeomorphic to S_{ω_1} . Let $Y_t = \{t\} \cup (\bigcup_{\alpha < \omega_1} T_\alpha)$, here the family $\{T_\alpha\}_{\alpha < \omega_1}$ is disjoint and each T_α is a non-trivial sequence converging to t in Y. Since f is finite subsequence-covering, there is a finite subset $K \subset f^{-1}(t)$ such that whenever T is a sequence

converging to t in Y there is a sequence L converging to a point $l \in K$ in X such that f(L) is a subsequence of T. For each $\alpha < \omega_1$ there is a sequence L_{α} converging to $l_{\alpha} \in K$ such that $f(L_{\alpha})$ is a subsequence of the sequence T_{α} . Since K is finite, without losing generality, suppose that all $l_{\alpha} = l \in K$, and let $X_l = \{l\} \cup (\bigcup_{\alpha < \omega_1} L_{\alpha})$. Then X_l is homeomorphic to S_{ω_1} . In fact, it is obvious that the family $\{L_{\alpha}\}_{\alpha < \omega_1}$ is disjoint. Since each point of T_{α} is isolated in Y_t , each point of L_{α} is also isolated in X_l . For each $\alpha < \omega_1$ and each finite subset L_{α} of L_{α} , then L_{α} is discrete in L_{α} . Thus the subspace L_{α} is homeomorphic to L_{α} , a contradiction with L_{α} -spaces. Therefore, L_{α} is an L_{α} -space.

Corollary 8 *sn*-metrizability, *g*-metrizability or metrizability is preserved by finite sub-sequence-covering and closed maps.

Proof sn-metrizability is preserved by finite subsequence-covering and closed maps from Theorems 4 and 7. g-metrizability is preserved by finite subsequence-covering and closed maps from Theorem 7 and Corollary 6. Since every first countable space is equivalent to a g-first countable and Fréchet space^[6], and each Fréchet space is preserved by a closed map, metrizability is preserved by finite subsequence-covering and closed maps.

Corollary 9 Spaces with a point-countable base are preserved by finite subsequence-covering and closed maps.

Proof It has been proved that a space with a point-countable base is equivalent to a first countable space with a point-countable k-network [6, Corollary 2.1.7]. Let $f: X \to Y$ be a finite subsequence-covering and closed map, here X has a point-countable base. Then Y is a g-first countable, Fréchet space, thus Y is a first countable space. On the other hand, Y has a point-countable k-network by [7, Theorem 5]. Hence, Y has a point-countable base.

Remark 10 Some related results are generalized by finite subsequence-covering maps. For example,

- (1) sn-first countability is preserved by 1-sequentially quotient maps^[5];
- (2) g-first countability is preserved by 1-sequence-covering and quotient maps^[6];
- (3) g-metrizability is preserved by finite subsequence-covering and closed maps^[10];
- (4) Spaces with a point-countable base are preserved by open and closed maps^[7].

Question 11 Are spaces with a point-countable weak base preserved by finite-to-one and closed maps?

3 Examples

There are two questions about sequence-covering maps as follows.

Question 12 (1) Is every 1-sequentially quotient map sequence-covering^[5, Question 2]?

(2) Is every open map of a sequential space 1-sequence-covering^[14, Question 3.9]?

In this section the questions are negatively answered by the following example. It is proved that let $f: X \to Y$ be an open map with X first countable, then f is 1-sequence-covering^[14].

Example 13 Let $Y = \{\frac{1}{n} : n \in \mathbb{Z}_+\} \bigcup \{0\}$ endow usual subspace topology of real line R. There are a closed image X of a metric space and a map $f: X \to Y$ such that

- (1) f is 1-sequentially quotient;
- (2) f is open;
- (3) f is not pseudo sequence-covering.

In fact, a family \mathcal{D} of subsets of $Y \setminus \{0\}$ is said to be almost disjoint if $A \cap B$ is finite whenever $A, B \in \mathcal{D}, A \neq B$. Using Zorn's Lemma, there exists a family \mathcal{A} of infinite subsets of $Y \setminus \{0\}$ such that \mathcal{A} is a almost disjoint family and maximal with respect to these properties. Then \mathcal{A} must be uncountable and denote it by $\{A_{\alpha} : \alpha \in A\}$. For each $\alpha \in A$, put $B_{\alpha} = \{0_{\alpha}\} \cup A_{\alpha}$ with subspace topology of Y. Define $M = \bigoplus_{\alpha \in A} B_{\alpha}$, and let X be the quotient space $M/\{0_{\alpha} : \alpha \in A\}$. Then X is the closed image of metric space M, and so it is a Fréchet space and homeomorphic to $S_{|A|}$. Define a map $f: X \to Y$ satisfying each $f|_{B_{\alpha}}$ is natural map.

- (1) f is a 1-sequentially quotient map. First, f is continuous. For each $y \in Y \setminus \{0\}$, $f^{-1}(y) = \bigoplus \{y : y \in A_{\alpha}\}$ is an open and closed subspace of X. If U is a neighborhood of 0 in Y, then $B_{\alpha} \setminus f^{-1}(U)$ is finite for each $\alpha \in A$, thus $f^{-1}(U)$ is open in X. Now, let $\{y_n\}$ be a non-trivial convergent sequence in Y. Then $y_n \to 0$. Put $S = \{y_n : n \in Z_+\} \setminus \{0\}$. Since A is a almost disjoint and maximal family of $Y \setminus \{0\}$, there is $\alpha \in A$ such that $S \cap A_{\alpha}$ is infinite, i.e., there is a sequence $\{x_k\}$ converging to 0 in X with each $x_k \in f^{-1}(y_{n_k})$. Hence, f is 1-sequentially quotient.
- (2) f is an open map. If not, there is an open set V in X such that f(V) is not open in Y. Then $0 \in V$. Put $L = Y \setminus f(V)$, then L is infinite. For each $\alpha \in A$, $f|_{B_{\alpha}} : B_{\alpha} \to f(B_{\alpha})$ is one-to-one, so $L \cap A_{\alpha} = f(A_{\alpha} \setminus V)$ is finite. Hence, $L \not\in \mathcal{A}$ and $\mathcal{A} \cup \{L\}$ is almost disjoint, a contradiction.
- (3) f is not a pseudo sequence-covering map. If not, there exists a compact subset K of X such that f(K) = Y. Since X is homeomorphic to $S_{|A|}$, there is a finite subset F of A such that $K \subset \bigcup_{\alpha \in F} B_{\alpha}$, thus $Y \setminus \{0\} = \bigcup_{\alpha \in F} A_{\alpha}$. Take $\beta \in A \setminus F$, then $A_{\beta} = A_{\beta} \cap (Y \setminus \{0\}) = \bigcup_{\alpha \in F} (A_{\beta} \cap A_{\alpha})$ is finite, a contradiction.

Example 14 There is a metric space X and a finite subsequence-covering and finite-to-one map $f: X \to Y$ such that

- (1) f is not 1-sequentially quotient;
- (2) f is not sequence-covering;
- (3) Y has no any point-countable weak base.

Let X be the topological sum of a family $\{I\} \cup \{X_{\alpha} : \alpha \in I\}$, where I is the closed unit interval, and each X_{α} is a non-trivial convergent sequence. Let Y be the space obtained from X by identifying the limit point of X_{α} with $\alpha \in I$ for each $\alpha \in I$. Let $f: X \to Y$ be the obvious map. Then Y is the quotient and finite-to-one image of a locally compact metric space X under f, and Y has no any point-countable weak base^[7, Remark 14]. It is easy to check that f is a finite subsequence-covering map. It is also easy to check that f is neither 1-sequentially quotient nor sequence-covering.

We know that every sequence-covering and compact map of a metric space is 1-sequence-covering^[8], and every 1-sequentially quotient map of an sn-first countable space is 1-sequence-covering^[9]. Hence, finite subsequence-covering maps are different from 1-sequentially quotient

maps and sequence-covering maps.

It has been shown^[15] that every LSC set-valued map from zero-dimensional paracompct spaces to a BCO space has continuous selections. A natural question is that the BCO spaces can be replaced by stratifiable spaces or not? We give the following example which negatively answers this question.

Example 15 Let X and Y be spaces, $f: X \to Y$ in Example 13. Define $\varphi: Y \to F(X)$ by $\varphi(y) = f^{-1}(y)$ for each $y \in Y$, then φ is lsc which has no continuous selection. If not, let g be a continuous selection of φ , then g(Y) is a compact set of X, but f is not pseudo sequence-covering, a contradiction.

References

- [1] Arhangel'skiĭ, A., Mappings and spaces, Russian Math. Surveys., 1966, 21: 115-162.
- [2] Boone, J.R., Siwiec, F., Sequentially quotient mappings, Czech. Math. J., 1976, 26: 174-182.
- [3] Ge Y., On sn-metrizable spaces, Acta Math. Sinica., 2002, 45: 355-360.
- [4] Gruenhage, G., Michael, E. and Tanaka, Y., Spaces determined by point-countable covers, Pacific J. Math., 1984, 113: 303-332.
- [5] Gu J., On 1-sequential quotient mappings, J. Math. Study, 2003, 44: 305-308.
- [6] Lin S., Point-countable Covering and Sequence-covering Mappings, Beijing: Chinese Scientific Publication, 2002.
- [7] Lin S. Tanaka, Y., Point-countable k-networks, closed maps, and related results, Topology Appl., 1994, 59(1): 79-86.
- [8] Lin S., Yan P., Sequence-covering maps of metric spaces, Topology Appl., 2001, 109: 301-314.
- [9] Lin S., Zhu J., Ge Y. and Gu J., Almost-open maps, sequence-covering maps and sn-networks, Indian J. Pure and Applied Math., 2006, 37: 111-119.
- [10] Liu C., Notes on weak bases, Questions and Answers in General Topology, 2004, 22: 39-42.
- [11] Siwiec, F., Sequence-covering and countably bi-quotient mappings, General Topology Appl., 1971, 1: 143-154.
- [12] Tanaka, Y., Closed maps and symmetric spaces, Questions Answers in General Topology, 1993, 11: 215-233.
- [13] Tanaka, Y., Theory of k-networks, Questions Answers in General Topology, 1994, 12: 139-164.
- [14] Xia S., Characterizations of certain g-first countable spaces, Advances in Mathematics (China), 2000, 29: 61-64.
- [15] Yan P., Jiang S., Countable sets, BCO spaces and selections, Topology Appl., 2005, 148: 1-5.

关于有限子序列覆盖映射

燕鹏飞1、林寿2、杨海葵3

- (1. 五邑大学数学物理系, 江门, 广东, 529020; 2. 宁德高等师范专科学校, 宁德, 福建, 352100; 3. 合肥师范学院数学系, 合肥, 安徽, 230039)
- **摘要:** 本文研究了几类拓扑性质在有限子序列覆盖映射下的保持性,并给出一个反例回答了如下问题: (1) 1- 序列商映射是序列覆盖映射吗? (2) 序列空间上的开映射是 1 序列覆盖映射吗? (3) 从零维仿紧空间到 Lasnev 空间的 LSC 的集值映射一定存在连续选择吗?
- **关键词**: 有限子序列覆盖映射; 序列覆盖映射; sn 第一可数空间; g 可度量化空间; \aleph 空间