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THE CLOSED MAPPINGS ON k-SEMISTRATIFIABLE SPACES

SHOU LIN, ZHANGYONG CAI, AND CHUAN LIU

ABSTRACT. Let f: X — Y be a closed mapping, where X is a k-semistratifiable
k-space. If Y contains no closed copy of S., (resp. S.), then 8f~1(y) is
Lindel6f(resp. compact) for each y € Y. This improves some results about
closed mappings on generalized metric spaces obtained by Liu [10], Tanaka
[13, 14, 15], Tanaka and Liu [16], and Yun [19]. At last, two mapping theo-
rems on kBT -spaces are established.

1. INTRODUCTION

The following Hanai-Morita-Stone Theorem(see [3]) is well known. Let f :
X — Y be a closed mapping, where X is a metric space. Then 9f~!(y) is
compact for each y € Y if and only if Y is a metric space.

Y. Tanaka [13, 14, 15] proved the following theorem.

Theorem 1.1. Let f : X — Y be a closed mapping, where X is a normal, k-and
N-space. Then Of~Y(y) is Lindeldf(resp. compact) for each y € Y if and only if
Y contains no closed copy of S, (resp. S.).

And the following question was posed by Y. Tanaka and Chuan Liu [16].

Question 1.2. Let f : X — Y be a closed map. Under what conditions on X or
Y, does Of ~1(y) have some nice properties for each y € Y ?

Interestingly, Liu [10] and Yun [19] have obtained a more precise result recently.

Theorem 1.3. Let f: X — Y be a closed mapping, where X is a k-and-R-space.
Then Of~1(y) is Lindeléf(resp. compact) for eachy € Y if and only if Y contains
no closed copy of S, (resp. S. ).
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Definition 1.4. [11] A space X is said to be k-semistratifiable if for each open
subset U of X there is a sequence {F(n,U)}nen of closed subsets of X such that
(1) U= UneN F(”” U)ﬂ
(2) fV C U, then F(n,V) C F(n,U);
(3) If a compact subset K C U, then K C F(m,U) for some m € N.

Each R-space is a k-semistratifiable space [11]. In the paper, we point out that
the sufficiency still holds if X in Theorem 1.3 is weakened to be a k-semistratifiable
k-space(see Theorem 2.5), and it is not true if X is a Moore space(see Remark
2.6) or an R-space(see Remark 2.7).

On the other hand, k-semistratifiable spaces are preserved by closed mapping
[5]. Each k-semistratifiable space is a k(-space, and each k[-space is preserved
by compact-covering and closed mappings [17], here a continuous mapping f :
X — Y is called a compact-covering mapping [3] if K is compact in Y, then
f(L) = K for some compact subset L in X. The following question is still open
[17, Question 3.5].

Question 1.5. Is each kB3-space preserved by closed mappings?

In this paper k3"-spaces are introduced and discussed, and it is proved that
kBT -spaces are preserved by closed mappings(see Theorem 3.3).

All spaces are assumed to be Hausdorff, and mappings are continuous and
surjective.

2. MAIN RESULTS

Let X be a space and P C X. P is said to be a sequential neighborhood of
x € P in X if each sequence converging to x is eventually in P. P is a sequentially
open subset of X if P is a sequential neighborhood of z in X for each x € P. P
is a sequentially closed subset of X if X \ P is sequentially open. X is said to be
a sequential space [3] if each sequentially open subset is open in X.

Lemma 2.1. [8] Let X be a k-semistratifiable space. Then for each subset W of
X there is a sequence {H(n,W)}nen of closed subsets of X such that
(1) Hn,W)C Hn+1,W)C W;
(2) If V.C W, then H(n,V) C H(n,W);
(3) If W is a sequential neighborhood of x, then every sequence converging to
x is eventually in H(m, W) for some m € N;
(4) If {G, : « € A} is a disjoint family of subsets of X and n € N, then
{H(n,G,) : « € A} is a discrete family in X.
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A subset D of a space X is said to be relatively discrete in X if D is a discrete
subspace of X, i.e., for each « € D, there is an open neighborhood U, of = such
that U, N (D \ {z}) = 0.

Lemma 2.2. Let X be a k-semistratifiable space. If D = {xo : a € A} is a
relatively discrete subset of X, there is a disjoint family {U, : o € A} such that

(1) U, is a sequential neighborhood of x,, in X for each o € A;
(2) {yao : @ € N'}UD is sequentially closed in X for each A’ C A and y,, € U,

PROOF. Suppose that H(-,-) is a function, which satisfies Lemma 2.1. For o € A,
let

(1) Lo ={zg:a# B € A}
(2) Go =Upen(H(n, X'\ Lo) \ H(n, X \ {za})); and
3) Ua = Upen(H(n, Ga) \ H(n, X \ {z40})).
Then U, is a sequential neighborhood of z, in X. In fact, suppose a sequence
S — Xq. Since x4 & Ly, by Lemma 2.1(3), S is eventually in some H(m, X \ L,).
Thus S is eventually in H(m,X \ Ly) \ H(m, X \ {zo}) C Go. Hence S is
eventually in some H(k,G,) \ H(k, X \ {zo}) C U,.

It is easy to check that {G, : @ € A} is disjoint and U, C G,. Then {U, :
a € A} is disjoint. If there is A’ C A such that {y, : @« € A’} U D is not
sequentially closed in X with some y, € U, for each a € A’, then there is a
non-trivial sequence L in {y, : @ € A’} \ D such that L converges to some point
x & D. We can assume that there is an m € N such that L C H(m, X \ D), hence
L C H(n,X \{zo}) for each a € A, n > m. Thus L C U,ep pem H (7, Ga), 50
there are an infinite subset L' C L and n < m such that L' C (J,cp H(n,Ga).
By Lemma 2.1(4), L’ is discrete in X, a contradiction. O

Lemma 2.3. Each k-semistratifiable space has a o-discrete network.

PROOF. Let (X, 7) be a k-semistratifiable space. There is a function g : Nx X —
7 such that [4, Theorem 5]

(1) x€gln+1,2) C g(n,z) for each n € N,z € X

(2) If z,, € g(n,yn) for each n € N and z,, — p in X, then y, — p in X.
Thus if p € g(n,yn) and y, € g(n,x,) for each n € N, then z, — p. By the
similar proof in [6, Theorem 4.11(v)=- (i)], X has a o-discrete network. O

A space X is said to be a k-space [3] if whenever K N A is closed in K for
each compact subset K of X, then A is closed in X. Each sequential space is a
k-space, and each k-space which each point is a Gs-set is a sequential space [9].
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Lemma 2.4. [8] Each k-semistratifiable k-space is a hereditarily meta-Lindelof
space.

k-semistratifiable spaces are preserved by closed mappings [5]. The following
is a closed mapping theorem on k-semistratifiable spaces about Question 1.2 and
Theorem 1.3.

Theorem 2.5. Let f : X — Y be a closed mapping, where X is a k-semistratifiable
k-space. Then f~Y(y) is Lindeldf(resp. compact) for each y € Y if Y contains
no closed copy of S, (resp. S. ).

PROOF. For each y € Y, put
A={xcdf Yy):thereis a sequence in X \ f~'(y) converging to x}.

Claim 1: A= 9f1(y).

If not, let B= f~(y)\ 4, and C = df~'(y) \ A. Then ) # C C B and B is
a sequentially open set of X. In fact, let S be a sequence in X, which converges
to a point x € B. If x € int(f~(y)), then S is eventually in B. If z € C, then
AU (X \ f~(y)) contains no subsequence of S, and so S is eventually in B. And
because X is a k-space and each point of X is a Gs-set, X is a sequential space.
Thus B is open in X. Therefore B C int(f~1(y)), and C = C Nint(f~1(y)) = 0,
a contradiction.

(1) Suppose Y contains no closed copy of S,,. Then we have the following
Claim 2.

Claim 2: A is an N;-compact subset of X.

If A is not Ni-compact, then X has an uncountable relatively discrete subset
D = {z4 : @ < wy}, which is closed discrete in A. Thus D = D N A, and there
is a disjoint family {U, : @ < wy}, which satisfies Lemma 2.2. For each o < wy
and y, € Uy \ f71(y), by Lemma 2.2, {y, : @ < w;} is closed discrete in X. In
fact, if {yo : @ < w1} contains a sequence converging to a point x € D, then
x € D. Thus there is § < w; such that £ = 23 € Ug. Hence there exist infinitely
many y.’s with y, € Ug, a contradiction. Now, it is not difficult to see that
for each a < wy, there is a sequence L, in X \ f~!(y) such that L, — ., and
{y}U(U{f(Ls) : @« < w1}) is a closed copy of S,,. This is a contradiction. Hence
Claim 2 holds.

A has a o-discrete network by Lemma 2.3. Thus A has a countable network by
Claim 2, so A is separable. Then A = df~!(y) is separable by Claim 1. Since a
separable meta-Lindelof space is Lindelof, 9f~1(y) is a Lindeldf space by Lemma
2.4.
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(2) Suppose Y contains no closed copy of S,. By the proof analogous to
(1), A is countably compact. Each countably compact k-semistratifiable space is
compact by Lemma 2.3, and so 9f~!(y) = A = A is compact.

This completes the proof of Theorem 2.5. O

Remark 2.6. There exists a closed mapping f : X — Y, where X is a Moore
space(hence, a k-and o-space), Y contains no closed copy of S, but f is not
peripherally Lindelof.

Let X be the Isbell-Mréwka space 1(N)(see [2, Example 4.4]), and Y be the
convergent sequence S; = {0} U {1/n : n € N} with the usual topology. Then
X is a Moore space, and Y contains no closed copy of S,. Define a mapping
f:(N) =Sy by f(¢(N)\N) = {0} and f(n) =1/n for each n € N. Thus f is a
closed mapping, and 9f~1(0) = ¢(N) \ N is not Lindel&f.

The following Remark indicates that k-ness of X in Theorem 2.5 is essential.
A space X is said to be an N-space if it is a regular space with a o-locally finite
k-network [6].

Remark 2.7. There exists a closed mapping f : X — Y, where X is an XN-
space(hence, a k-semistratifiable space), Y contains no closed copy of S, but f
is not peripherally Lindelof.

Let Sy = {0} U (U;en Xi), where X; = {1/i} U{1/i +1/5% : j > i}. The Sy
be endowed the Arens topology [3, Example 1.6.19]. For each a < wy, put X, =
S\ {1/n :n € N}. Then X, is a paracompact R-space. Let X = P, _,, Xa,
and A be the set of all accumulation points in X. Then A is closed in X. Put
Y = X/A, and let f : X — Y be a natural quotient mapping. Then f is a closed
mapping, and so f is a compact-covering mapping. Since each compact subset of

X is finite, each compact subset of Y is finite. Thus Y contains no closed copy
of S,. But 9f1([A]) = A is not Lindeldf.

3. RELATED RESULTS

In this section, we discuss closed mapping theorems on k3T -spaces about Ques-
tion 1.5.

Definition 3.1. Let (X, 7) be a space, and g : N x X — 7 a function satisfied
x € gln+1,2) C g(n,z) for each n € N,z € X. Consider the following conditions
on g.
(1) If K is compact in X and K Ng(n,y,) # 0 for each n € N, then {y, } has
a cluster point in X.
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(2) If z,, € g(n,yy) for each n € N and {z,,} has a cluster point, then {y,}
has a cluster point in X;

(3) If x,, € g(n,yy) for each n € N and each subsequence of {z,,} has a cluster
point, then {y,} has a cluster point in X;

X is called a kS-space [17] if there is a function g satisfying the condition (1)
is called a wee-space [18] if there is a function g satisfying the condition (2)
is called a kBT -space if there is a function g satisfying the condition (3).

. X
. X

Obviously, wce-spaces = kB'-spaces = kB-spaces. It is easy to check that
stratifiable spaces are wce-spaces [18], and k-semistratifiable spaces are k(-spaces
[17]. We don’t know whether there is a regular k-semistratifiable space which is
not a wce-space.

Lemma 3.2. Every regular k-semistratifiable space is a kB3 -space.

PROOF. Let (X, 7T) be a regular k-semistratifiable space. By [4, Theorem 5], there
is a function g : N x X — 7 such that

(1) zegln+1,z) C g(n,z) for each n € N,z € X;

(2) If z,, € g(n,y,) for each n € N and z,, — p in X, then y,, — p in X.
We shall show that the g satisfies the Definition 3.1(3). Let {z,}, {yn} be two
sequences in X such that z, € g(n,y,) for each n € N. Suppose that each
subsequence of {x,} has a cluster point in X, and let p be a cluster point of
{z,}. Since X is a regular space, there is a sequence {G,} of open subsets of X
such that {p} = ,cyGn and Gnhy1 C G, for each n € N. Then there exist a
subsequence {x,,} of {z,} with x,, € G; for each i € N. If ¢ € X is a cluster
point of the sequence {z,,}, ¢ € ;enGi = {p}, thus p is the unique cluster
point of the sequence {x,,}, hence x,, — p, then y,,, — p. Therefore, X is a
kBt -space. O

Let f: X — Y be a mapping. f is called countably compact-covering if for
each countably compact subset K in Y, their exists a countably compact subset
L in X such that f(L) D K; f is called quasi-perfect [3] if f is closed and f~!(y)
is countably compact for each y € Y.

Theorem 3.3. Let f : X — Y be a closed mapping. If X is a k3T -space, then
Y is a kB3t -space and f is countably compact-covering.

PROOF. Suppose g is the function on N x X satisfying the condition (3) in Def-
inition 3.1. For each A C X,n € N, denoted (J,.,9(n,x) by g(n,A). Let
h(n,y) =Y\ f(X\ g(n, f~1(y))) for each n € Nand y € Y. Then h(y,n) is open
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inY andy € h(n+1,y) C h(n,y). Assume that z, € h(n,y,) for each n € N and
any subsequence of {2, } has a cluster point in Y. Then f~1(2,,) C g(n, f~1(yn)).
For each n € N, choose a,, € f~*(z,), and then there exists b, € f~!(y,) satisfy-
ing a, € g(n, by).

Casel: {z, : n € N} is a finite set.

Without loss of generality, suppose z, = z € Y for each n € N. Then pick
an, = a € X for each n € N. So a € g(n,b,), and {b,} has a cluster point in X,
thus {y,} has a cluster point in Y by the continuity of f.

Case 2: {z, : n € N} is an infinite set.

We may assume that z, # z,, if n # m € N. Each subsequence of {a,} has a
cluster point in X because each subsequence of {z,} has a cluster point in ¥ and
f is closed. Thus {b,} has a cluster point in X, and {y,} has a cluster point in
Y.

In a word, Y is a k31 -space.

Assume K is a countably compact subset of Y. Pick z, € f~!(y) for each
y€ K. Put E = {x,:y € K}. Then f(E) = f(E) = K D K. We assert that
FE is countably compact in X. Let {z,} be a sequence in FE with z,, # x,, when
n # m. For each n € N, ENg(n,z,) # 0, and choose z, € EN g(n,z,).

(1) There is a p € X such that z,, = p for each n € N. Then {xz,,} has a cluster
point in E.

(2) Suppose z, # zm when n # m € N. Since fjg : E — K is an injective
mapping and K is countably compact, each subsequence of { f(z,)} has a cluster
point in K. Then each subsequence of {z,} has a cluster point in X. Hence {x,}
has a cluster point in E.

Therefore, f is a countably compact-covering mapping. O

Corollary 3.4. [7] Fach closed mapping from a regular k-semistratifiable space
1§ compact-covering.

Theorem 3.5. Let f: X — Y be a quasi-perfect mapping. If Y is a kB -space,
then X is a kB -space.

PROOF. Let g be the function on N x Y satisfying the condition (3) in Definition
3.1 for a kB3*-space Y. Definite h(n,x) = f~1(g(n, f(x))) for each n € N and
x € X. Then h(n,x) is open in X and = € h(n + 1,2) C h(n,z). Assume
that z, € h(n,z,) for each n € N and any subsequence of {x,} has a cluster
point in X. Then any subsequence of {f(z,)} has a cluster point in Y. Since
flxn) € g(n, f(zn)), {f(2:)} has a cluster point in Y.

(1) Suppose that there is yo € Y with f(z,) = yo for each n € N. Then
zn € £~ (yo). Since f~1(yo) is countably compact, {z,} has a cluster point in X.
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(2) Suppose f(zn) # f(zm) when n # m € N. Then {z,} has a cluster point
in X.
Hence, X is a k3" -space. O

We don’t know whether there is a kS-space which is not a k3T-space. The
authors thank to the referee of this paper for his following result related with the
question. A space X is isocompact [1] if every closed countably compact set in X
is compact.

Theorem 3.6. Let X be a kB3-space. If X satisfies one of the conditions below,
then X is a kB -space.

(1) a regular space whose points are Ggs-sets;
(2) a k-space;
(3) an isocompact space which is normal or countably paracompact.

Indeed, let {z,}, {yn} be two sequences in a kS-space X such that z,, € g(n, yy)
for each n € N, and each subsequence of {z,} has a cluster point in X. Denote
L = {z, : n € N}. For (1), {x,} has a convergent subsequence by the similar
proof in Lemma 3.2. For (2), we can assume that L is not closed in X. Thus, L
has a subsequence contained in a compact set in X. For (3), since L is relatively
rightly compact [12](i. e., whenever U is a locally finite collection of open subsets
of X, L meets at most finitely many U € U), clL is countably compact by [12,
Proposition 3.1]. Hence {y,} has a cluster point in X. Thus X is a k3" -space.

By Theorems 3.3 and 3.6, the answer of Question 1.5 is positive if the domain
satisfies one of the conditions in Theorem 3.6.
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