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THE CLOSED MAPPINGS ON k-SEMISTRATIFIABLE SPACES

SHOU LIN, ZHANGYONG CAI, AND CHUAN LIU

Abstract. Let f : X → Y be a closed mapping, whereX is a k-semistratifiable

k-space. If Y contains no closed copy of Sω1 (resp. Sω), then ∂f−1(y) is

Lindelöf(resp. compact) for each y ∈ Y . This improves some results about

closed mappings on generalized metric spaces obtained by Liu [10], Tanaka

[13, 14, 15], Tanaka and Liu [16], and Yun [19]. At last, two mapping theo-

rems on kβ+-spaces are established.

1. Introduction

The following Hanai-Morita-Stone Theorem(see [3]) is well known. Let f :
X → Y be a closed mapping, where X is a metric space. Then ∂f−1(y) is
compact for each y ∈ Y if and only if Y is a metric space.

Y. Tanaka [13, 14, 15] proved the following theorem.

Theorem 1.1. Let f : X → Y be a closed mapping, where X is a normal, k-and
ℵ-space. Then ∂f−1(y) is Lindelöf(resp. compact) for each y ∈ Y if and only if
Y contains no closed copy of Sω1(resp. Sω).

And the following question was posed by Y. Tanaka and Chuan Liu [16].

Question 1.2. Let f : X → Y be a closed map. Under what conditions on X or
Y , does ∂f−1(y) have some nice properties for each y ∈ Y ?

Interestingly, Liu [10] and Yun [19] have obtained a more precise result recently.

Theorem 1.3. Let f : X → Y be a closed mapping, where X is a k-and-ℵ-space.
Then ∂f−1(y) is Lindelöf(resp. compact) for each y ∈ Y if and only if Y contains
no closed copy of Sω1(resp. Sω).
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Definition 1.4. [11] A space X is said to be k-semistratifiable if for each open
subset U of X there is a sequence {F (n,U)}n∈N of closed subsets of X such that

(1) U =
⋃
n∈N F (n,U);

(2) If V ⊂ U , then F (n, V ) ⊂ F (n,U);
(3) If a compact subset K ⊂ U , then K ⊂ F (m,U) for some m ∈ N.

Each ℵ-space is a k-semistratifiable space [11]. In the paper, we point out that
the sufficiency still holds ifX in Theorem 1.3 is weakened to be a k-semistratifiable
k-space(see Theorem 2.5), and it is not true if X is a Moore space(see Remark
2.6) or an ℵ-space(see Remark 2.7).

On the other hand, k-semistratifiable spaces are preserved by closed mapping
[5]. Each k-semistratifiable space is a kβ-space, and each kβ-space is preserved
by compact-covering and closed mappings [17], here a continuous mapping f :
X → Y is called a compact-covering mapping [3] if K is compact in Y , then
f(L) = K for some compact subset L in X. The following question is still open
[17, Question 3.5].

Question 1.5. Is each kβ-space preserved by closed mappings?

In this paper kβ+-spaces are introduced and discussed, and it is proved that
kβ+-spaces are preserved by closed mappings(see Theorem 3.3).

All spaces are assumed to be Hausdorff, and mappings are continuous and
surjective.

2. Main Results

Let X be a space and P ⊂ X. P is said to be a sequential neighborhood of
x ∈ P in X if each sequence converging to x is eventually in P . P is a sequentially
open subset of X if P is a sequential neighborhood of x in X for each x ∈ P . P
is a sequentially closed subset of X if X \ P is sequentially open. X is said to be
a sequential space [3] if each sequentially open subset is open in X.

Lemma 2.1. [8] Let X be a k-semistratifiable space. Then for each subset W of
X there is a sequence {H(n,W )}n∈N of closed subsets of X such that

(1) H(n,W ) ⊂ H(n+ 1,W ) ⊂W ;
(2) If V ⊂W , then H(n, V ) ⊂ H(n,W );
(3) If W is a sequential neighborhood of x, then every sequence converging to

x is eventually in H(m,W ) for some m ∈ N;
(4) If {Gα : α ∈ Λ} is a disjoint family of subsets of X and n ∈ N, then
{H(n,Gα) : α ∈ Λ} is a discrete family in X.
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A subset D of a space X is said to be relatively discrete in X if D is a discrete
subspace of X, i.e., for each x ∈ D, there is an open neighborhood Ux of x such
that Ux ∩ (D \ {x}) = ∅.

Lemma 2.2. Let X be a k-semistratifiable space. If D = {xα : α ∈ Λ} is a
relatively discrete subset of X, there is a disjoint family {Uα : α ∈ Λ} such that

(1) Uα is a sequential neighborhood of xα in X for each α ∈ Λ;
(2) {yα : α ∈ Λ′}∪D is sequentially closed in X for each Λ′ ⊂ Λ and yα ∈ Uα.

Proof. Suppose that H(·, ·) is a function, which satisfies Lemma 2.1. For α ∈ Λ,
let

(1) Lα = {xβ : α 6= β ∈ Λ};
(2) Gα =

⋃
n∈N(H(n,X \ Lα) \H(n,X \ {xα})); and

(3) Uα =
⋃
n∈N(H(n,Gα) \H(n,X \ {xα})).

Then Uα is a sequential neighborhood of xα in X. In fact, suppose a sequence
S → xα. Since xα 6∈ Lα, by Lemma 2.1(3), S is eventually in some H(m,X \Lα).
Thus S is eventually in H(m,X \ Lα) \ H(m,X \ {xα}) ⊂ Gα. Hence S is
eventually in some H(k,Gα) \H(k,X \ {xα}) ⊂ Uα.

It is easy to check that {Gα : α ∈ Λ} is disjoint and Uα ⊂ Gα. Then {Uα :
α ∈ Λ} is disjoint. If there is Λ′ ⊂ Λ such that {yα : α ∈ Λ′} ∪ D is not
sequentially closed in X with some yα ∈ Uα for each α ∈ Λ′, then there is a
non-trivial sequence L in {yα : α ∈ Λ′} \D such that L converges to some point
x 6∈ D. We can assume that there is an m ∈ N such that L ⊂ H(m,X \D), hence
L ⊂ H(n,X \ {xα}) for each α ∈ Λ, n > m. Thus L ⊂

⋃
α∈Λ,n<mH(n,Gα), so

there are an infinite subset L′ ⊂ L and n < m such that L′ ⊂
⋃
α∈ΛH(n,Gα).

By Lemma 2.1(4), L′ is discrete in X, a contradiction. �

Lemma 2.3. Each k-semistratifiable space has a σ-discrete network.

Proof. Let (X, τ) be a k-semistratifiable space. There is a function g : N×X →
τ such that [4, Theorem 5]

(1) x ∈ g(n+ 1, x) ⊂ g(n, x) for each n ∈ N, x ∈ X;
(2) If xn ∈ g(n, yn) for each n ∈ N and xn → p in X, then yn → p in X.

Thus if p ∈ g(n, yn) and yn ∈ g(n, xn) for each n ∈ N, then xn → p. By the
similar proof in [6, Theorem 4.11(v)⇒ (i)], X has a σ-discrete network. �

A space X is said to be a k-space [3] if whenever K ∩ A is closed in K for
each compact subset K of X, then A is closed in X. Each sequential space is a
k-space, and each k-space which each point is a Gδ-set is a sequential space [9].
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Lemma 2.4. [8] Each k-semistratifiable k-space is a hereditarily meta-Lindelöf
space.

k-semistratifiable spaces are preserved by closed mappings [5]. The following
is a closed mapping theorem on k-semistratifiable spaces about Question 1.2 and
Theorem 1.3.

Theorem 2.5. Let f : X → Y be a closed mapping, where X is a k-semistratifiable
k-space. Then ∂f−1(y) is Lindelöf(resp. compact) for each y ∈ Y if Y contains
no closed copy of Sω1(resp. Sω).

Proof. For each y ∈ Y , put

A = {x ∈ ∂f−1(y) : there is a sequence in X \ f−1(y) converging to x}.

Claim 1: A = ∂f−1(y).
If not, let B = f−1(y) \ A, and C = ∂f−1(y) \ A. Then ∅ 6= C ⊂ B and B is

a sequentially open set of X. In fact, let S be a sequence in X, which converges
to a point x ∈ B. If x ∈ int(f−1(y)), then S is eventually in B. If x ∈ C, then
A∪ (X \ f−1(y)) contains no subsequence of S, and so S is eventually in B. And
because X is a k-space and each point of X is a Gδ-set, X is a sequential space.
Thus B is open in X. Therefore B ⊂ int(f−1(y)), and C = C ∩ int(f−1(y)) = ∅,
a contradiction.

(1) Suppose Y contains no closed copy of Sω1 . Then we have the following
Claim 2.

Claim 2: A is an ℵ1-compact subset of X.
If A is not ℵ1-compact, then X has an uncountable relatively discrete subset

D = {xα : α < ω1}, which is closed discrete in A. Thus D = D ∩ A, and there
is a disjoint family {Uα : α < ω1}, which satisfies Lemma 2.2. For each α < ω1

and yα ∈ Uα \ f−1(y), by Lemma 2.2, {yα : α < ω1} is closed discrete in X. In
fact, if {yα : α < ω1} contains a sequence converging to a point x ∈ D, then
x ∈ D. Thus there is β < ω1 such that x = xβ ∈ Uβ . Hence there exist infinitely
many yα’s with yα ∈ Uβ , a contradiction. Now, it is not difficult to see that
for each α < ω1, there is a sequence Lα in X \ f−1(y) such that Lα → xα, and
{y}∪ (∪{f(Lα) : α < ω1}) is a closed copy of Sω1 . This is a contradiction. Hence
Claim 2 holds.
A has a σ-discrete network by Lemma 2.3. Thus A has a countable network by

Claim 2, so A is separable. Then A = ∂f−1(y) is separable by Claim 1. Since a
separable meta-Lindelöf space is Lindelöf, ∂f−1(y) is a Lindelöf space by Lemma
2.4.
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(2) Suppose Y contains no closed copy of Sω. By the proof analogous to
(1), A is countably compact. Each countably compact k-semistratifiable space is
compact by Lemma 2.3, and so ∂f−1(y) = A = A is compact.

This completes the proof of Theorem 2.5. �

Remark 2.6. There exists a closed mapping f : X → Y , where X is a Moore
space(hence, a k-and σ-space), Y contains no closed copy of Sω, but f is not
peripherally Lindelöf.

Let X be the Isbell-Mrówka space ψ(N)(see [2, Example 4.4]), and Y be the
convergent sequence S1 = {0} ∪ {1/n : n ∈ N} with the usual topology. Then
X is a Moore space, and Y contains no closed copy of Sω. Define a mapping
f : ψ(N)→ S1 by f(ψ(N) \N) = {0} and f(n) = 1/n for each n ∈ N. Thus f is a
closed mapping, and ∂f−1(0) = ψ(N) \ N is not Lindelöf.

The following Remark indicates that k-ness of X in Theorem 2.5 is essential.
A space X is said to be an ℵ-space if it is a regular space with a σ-locally finite
k-network [6].

Remark 2.7. There exists a closed mapping f : X → Y , where X is an ℵ-
space(hence, a k-semistratifiable space), Y contains no closed copy of Sω, but f
is not peripherally Lindelöf.

Let S2 = {0} ∪ (
⋃
i∈N Xi), where Xi = {1/i} ∪ {1/i + 1/j2 : j > i}. The S2

be endowed the Arens topology [3, Example 1.6.19]. For each α < ω1, put Xα =
S2 \ {1/n : n ∈ N}. Then Xα is a paracompact ℵ-space. Let X =

⊕
α<ω1

Xα,
and A be the set of all accumulation points in X. Then A is closed in X. Put
Y = X/A, and let f : X → Y be a natural quotient mapping. Then f is a closed
mapping, and so f is a compact-covering mapping. Since each compact subset of
X is finite, each compact subset of Y is finite. Thus Y contains no closed copy
of Sω. But ∂f−1([A]) = A is not Lindelöf.

3. Related Results

In this section, we discuss closed mapping theorems on kβ+-spaces about Ques-
tion 1.5.

Definition 3.1. Let (X, τ) be a space, and g : N × X → τ a function satisfied
x ∈ g(n+1, x) ⊂ g(n, x) for each n ∈ N, x ∈ X. Consider the following conditions
on g.

(1) If K is compact in X and K ∩ g(n, yn) 6= ∅ for each n ∈ N, then {yn} has
a cluster point in X.



144 SHOU LIN, ZHANGYONG CAI, AND CHUAN LIU

(2) If xn ∈ g(n, yn) for each n ∈ N and {xn} has a cluster point, then {yn}
has a cluster point in X;

(3) If xn ∈ g(n, yn) for each n ∈ N and each subsequence of {xn} has a cluster
point, then {yn} has a cluster point in X;

X is called a kβ-space [17] if there is a function g satisfying the condition (1). X
is called a wcc-space [18] if there is a function g satisfying the condition (2). X
is called a kβ+-space if there is a function g satisfying the condition (3).

Obviously, wcc-spaces ⇒ kβ+-spaces ⇒ kβ-spaces. It is easy to check that
stratifiable spaces are wcc-spaces [18], and k-semistratifiable spaces are kβ-spaces
[17]. We don’t know whether there is a regular k-semistratifiable space which is
not a wcc-space.

Lemma 3.2. Every regular k-semistratifiable space is a kβ+-space.

Proof. Let (X, τ) be a regular k-semistratifiable space. By [4, Theorem 5], there
is a function g : N×X → τ such that

(1) x ∈ g(n+ 1, x) ⊂ g(n, x) for each n ∈ N, x ∈ X;
(2) If xn ∈ g(n, yn) for each n ∈ N and xn → p in X, then yn → p in X.

We shall show that the g satisfies the Definition 3.1(3). Let {xn}, {yn} be two
sequences in X such that xn ∈ g(n, yn) for each n ∈ N. Suppose that each
subsequence of {xn} has a cluster point in X, and let p be a cluster point of
{xn}. Since X is a regular space, there is a sequence {Gn} of open subsets of X
such that {p} =

⋂
n∈N Gn and Gn+1 ⊂ Gn for each n ∈ N. Then there exist a

subsequence {xni} of {xn} with xni ∈ Gi for each i ∈ N. If q ∈ X is a cluster
point of the sequence {xni

}, q ∈
⋂
i∈N Gi = {p}, thus p is the unique cluster

point of the sequence {xni}, hence xni → p, then yni → p. Therefore, X is a
kβ+-space. �

Let f : X → Y be a mapping. f is called countably compact-covering if for
each countably compact subset K in Y , their exists a countably compact subset
L in X such that f(L) ⊃ K; f is called quasi-perfect [3] if f is closed and f−1(y)
is countably compact for each y ∈ Y .

Theorem 3.3. Let f : X → Y be a closed mapping. If X is a kβ+-space, then
Y is a kβ+-space and f is countably compact-covering.

Proof. Suppose g is the function on N×X satisfying the condition (3) in Def-
inition 3.1. For each A ⊂ X,n ∈ N, denoted

⋃
x∈A g(n, x) by g(n,A). Let

h(n, y) = Y \ f(X \ g(n, f−1(y))) for each n ∈ N and y ∈ Y . Then h(y, n) is open
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in Y and y ∈ h(n+ 1, y) ⊂ h(n, y). Assume that zn ∈ h(n, yn) for each n ∈ N and
any subsequence of {zn} has a cluster point in Y . Then f−1(zn) ⊂ g(n, f−1(yn)).
For each n ∈ N, choose an ∈ f−1(zn), and then there exists bn ∈ f−1(yn) satisfy-
ing an ∈ g(n, bn).

Case1: {zn : n ∈ N} is a finite set.
Without loss of generality, suppose zn = z ∈ Y for each n ∈ N. Then pick

an = a ∈ X for each n ∈ N. So a ∈ g(n, bn), and {bn} has a cluster point in X,
thus {yn} has a cluster point in Y by the continuity of f .

Case 2: {zn : n ∈ N} is an infinite set.
We may assume that zn 6= zm if n 6= m ∈ N. Each subsequence of {an} has a

cluster point in X because each subsequence of {zn} has a cluster point in Y and
f is closed. Thus {bn} has a cluster point in X, and {yn} has a cluster point in
Y .

In a word, Y is a kβ+-space.
Assume K is a countably compact subset of Y . Pick xy ∈ f−1(y) for each

y ∈ K. Put E = {xy : y ∈ K}. Then f(E) = f(E) = K ⊃ K. We assert that
E is countably compact in X. Let {xn} be a sequence in E with xn 6= xm when
n 6= m. For each n ∈ N, E ∩ g(n, xn) 6= ∅, and choose zn ∈ E ∩ g(n, xn).

(1) There is a p ∈ X such that zn = p for each n ∈ N. Then {xn} has a cluster
point in E.

(2) Suppose zn 6= zm when n 6= m ∈ N. Since f|E : E → K is an injective
mapping and K is countably compact, each subsequence of {f(zn)} has a cluster
point in K. Then each subsequence of {zn} has a cluster point in X. Hence {xn}
has a cluster point in E.

Therefore, f is a countably compact-covering mapping. �

Corollary 3.4. [7] Each closed mapping from a regular k-semistratifiable space
is compact-covering.

Theorem 3.5. Let f : X → Y be a quasi-perfect mapping. If Y is a kβ+-space,
then X is a kβ+-space.

Proof. Let g be the function on N×Y satisfying the condition (3) in Definition
3.1 for a kβ+-space Y . Definite h(n, x) = f−1(g(n, f(x))) for each n ∈ N and
x ∈ X. Then h(n, x) is open in X and x ∈ h(n + 1, x) ⊂ h(n, x). Assume
that xn ∈ h(n, zn) for each n ∈ N and any subsequence of {xn} has a cluster
point in X. Then any subsequence of {f(xn)} has a cluster point in Y . Since
f(xn) ∈ g(n, f(zn)), {f(zn)} has a cluster point in Y .

(1) Suppose that there is y0 ∈ Y with f(zn) = y0 for each n ∈ N. Then
zn ∈ f−1(y0). Since f−1(y0) is countably compact, {zn} has a cluster point in X.
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(2) Suppose f(zn) 6= f(zm) when n 6= m ∈ N. Then {zn} has a cluster point
in X.

Hence, X is a kβ+-space. �

We don’t know whether there is a kβ-space which is not a kβ+-space. The
authors thank to the referee of this paper for his following result related with the
question. A space X is isocompact [1] if every closed countably compact set in X
is compact.

Theorem 3.6. Let X be a kβ-space. If X satisfies one of the conditions below,
then X is a kβ+-space.

(1) a regular space whose points are Gδ-sets;
(2) a k-space;
(3) an isocompact space which is normal or countably paracompact.

Indeed, let {xn}, {yn} be two sequences in a kβ-spaceX such that xn ∈ g(n, yn)
for each n ∈ N, and each subsequence of {xn} has a cluster point in X. Denote
L = {xn : n ∈ N}. For (1), {xn} has a convergent subsequence by the similar
proof in Lemma 3.2. For (2), we can assume that L is not closed in X. Thus, L
has a subsequence contained in a compact set in X. For (3), since L is relatively
rightly compact [12](i. e., whenever U is a locally finite collection of open subsets
of X, L meets at most finitely many U ∈ U), clL is countably compact by [12,
Proposition 3.1]. Hence {yn} has a cluster point in X. Thus X is a kβ+-space.

By Theorems 3.3 and 3.6, the answer of Question 1.5 is positive if the domain
satisfies one of the conditions in Theorem 3.6.
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