FI0H 5 ¥ ¥ # B Vol.30, No. 5
20014£10 A ADVANCES IN MATHEMATICS Oct., 2001

Isolated Chain Recurrent Points
of Some Continua
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Abstract For a continuous map of tree or graph to itself, we show the properties that every
isolated chain recurrent point is an eventually periodic point, and an isolated chain recurrent point
which is not in the orbit of a critical point and has no critical point in its orbit is a periodic point.
Furthermore, the property can also be extended to some special A-dendroids.
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Chain recurrent points, as one of important concepts in discrete dynamical system, was
first introduced by L. Block and J. E. Franke in [1]. In computer iterations it is quite easy to
mistake chain recurrent points as periodic points, so it is necessary to make clear the relationships
between them. In {2], L. Block and J. E. Franke proved that for a continuous map of the interval
to itself or of the circle to itself, any isolated chain recurrent point is an eventually periodic
pdint, and an isolated chain recurrent point which is not in the orbit of a critical point and has
no critical point in its orbit is a periodic point. Some results of dynamical system on intervals
are still true on some particular continua, for example trees!®%l. The aim of this paper is to try
to generalize the above result from interval maps or circle maps to maps of some continua.

In this paper all maps are continuous. Let (X,d) be a compact metric space, and f :
X — X be a map, f" is the n-th iteration of f for n = 0,1,2,---, and Per(f) is the set of
periodic points of f. Assume z,y € X. For every € > 0, an £-chain from z to y is a finite
sequence {xg = x,x1, -+, &n = y} of X with d(f(z:~1),z;) < € for 1 < 7 < n, and denote
that CR.(x) = {y € X : there is an e-chain from z to y}. z can be chained to y if for every
€ > 0 there is an e-chain from z to y, and z is called a chain recurrent point if ¢ can be
chained to z, and denote that CR(f) = {& € X : z is a chain recurrent point of X}. The set
Orbs(z) = {f*(z) : »=0,1,2, -} is called the orbit of z, w(z) denotes the set of limit points of
Orby(z). A point x in X is an eventually periodic point if some element in Orb(x) is a periodic
point, and x is a critical point of f if f is not a local homeomorphism at z.

By a continuum we mean a compact connected metric spacelt). A dendrite is a locally
connected continuum containing no simple closed curve. A graph is a continuum which can be

written as the union of finitely many arcs any two of which are either disjoint or intersect only
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in one or both of their end points. A tree means an acyclic graph, i.e., a graph that contains no
simple closed curve. Every tree is a dendrite. Let T denote a tree. We shall first consider the
tree map f : T — T. For each a,b € T, [a,b] denotes the smallest subtree containing {a,b} in T.

Lemma 1 For any z € T and any ¢ > 0, CR.(z) has a finite number of components, and
each component is an open connected subset of T which contains at least one element of the
orbit of x.

Proof For each z € T, define U.(z) = {y € T : diam|z,y] < €}. Let C be a connected
subset of T, since cl(C) is a subtree of T, which has at most finitely many endpoints, say
ai,az,  +,an, put U-(C) = CUU._, Uc(a;)). Obviously, U.(C) is an open connected subset of
T. Define that By = U.(f(z)), and Bp41 = U (By,) for each n > 1, then each B, is an open and
connected subset of T, f*(z) € B, and CR.(x) = |J,,51 Bn, thus each component of CR.(z) is
the union of some B s, which is open in T and conta;ns at least one element of the orbit of z.
If CR.(z) has infinitely many components, denote that CR.(z) = UJ.21 Aj, here each A; is a
component of CR.(x), then each A, is open in T and contains at least one element of the orbit
of z. For each j € N there is nj € N such that f*(z) € A;. Since T is compact, assume that z
is a limit point of the set {f™(z) : j € N}, then z € CR.(x), so z € A; for some i € N. As A,
is open in T, f™*(z) € A; for some k > i, then A; N Ax # 0, a contradiction. This completes the
proof of Lemma 1.

The following two Lemmas hold for every compact metric space X.

Lemma 213 Let f: X — X. If ¢ € CR(f), then f*(z) can be chained to z for each
keN.

Lemma 312 TLet f: X — X. If € CR(f) and z € w(z), then z can be chained to z.

Lemma 4 Let f:7 — T, and z € CR(f). Suppose that = is an endpoint of an open
connected subset J C T\CR(f) such that £ can be chained to each point of J, then z is an
eventually periodic point.

Proof Suppose that z is not an eventually periodic point, then {f*(x) : n € N} is an
infinite set, and there is a subsequence {f™ (z)} of {f™(z)} with f™(z) = 2 € w(x). It follows
from Lemma 3 that z can be chained to each point of J. Note that f*(J) N Orbs(z) = @ for
n=20,1,2,---, otherwise, by Lemma 2 there is a point in J to be a chain recurrent point. As
z € cl(J), fi(z) € FUUIN\F(J) C Bd(fi(cl(J))). Since T is a tree, we can assume that all
fm(z) € I for some closed interval I C T. While each cl(f*(J)) is a subtree of T and f*(z) is
one of endpoint of cl(fi(J)), so f™(J) must converge to z. Thus for each point y € J, z € w(y)
and so y € CR(f) contrary to the fact that J C T\CR(f).

Lemmab Let f:T — T, and z € CR(f). Then either z € w(z) or z is an endpoint of an
open connected subset J of 7 such that = can be chained to each point of J.

Proof Suppose that z ¢ w(z), choose z € w(z). Note that x € w(z), otherwise, = € w(zx).
Similarly, z ¢ Orbs(2). So § = d({z}, Orbs(z)) > 0.

For each n € N, by Lemma 1, CRy/,(z) has only finitely many components, and each
component contains at least one point of Orbs(z). It follows from Lemma 3, there is some
component J, such that = € J,,. Note that the diameter of J,, is at least § and J,41 C Jn. Let
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K = (122, Jn. Then z and hence z can be chained to every point of K, and K contains an open
connected subset J with one endpoint x.

A space X is said to have the property () if for f: X — X, any isolated chain recurrent
point of f is an eventually periodic point.

Theorem 1  Every tree has the property ().

Proof Suppose that z is an isolated chain recurrent point of f. We may assume that
is not a periodic point, then = € w(x). So by Lemma 5, x satisfies the hypothesis of Lemma 4.
Hence x is an eventually periodic point.

Lemma 621 Let X be a compact metric space and f : X — X. Suppose f(p) = p and
p can be chained to ¢ with  # p. There is a sequence {z;} approaching p such that for each
i,%; # p and z; can be chained to z.

Theorem 2 Let f: T — T, and let = be an isolated chain recurrent point of f. Suppose
that z is not in the orbit of a critical point and no critical point is in the orbit of z, then z is a
periodic point.

1t can be similarly proved as in [2], we omitted the proof.

Theorem 1 and Theorem 2 also hold for graphs. Though we don’t know the above results
can be generalized to what kind of dendrites. In the following, we consider some kind of A-
dendroids!¥!. Recall some basic concepts on contimuum theory. Let X be a continuum. X is
said to be hereditarily unicoherent provided that the intersection of any two subcontinua of X
is connected. X is said to be hereditarily decomposable provided that every subcontinuum of
X is the union of its two proper subcontinua. A A-dendroid is a hereditarily unicoherent and
hereditarily decomposable continuum. Every dendrite is a A-dendroid. A subcontinuum @ of a
continuum X is said to be terminal provided that for every subcontinnum X of X, if K NQ # 0,
then either K C Q or Q C K.

Let us introduce a special compactification of trees due to Charatonik!®l. For each tree T' and
n € N, take a subset {q1,q2, --,¢»} of T and a finite sequence {Q;,Q2, - -,Q@,} of A-dendroids
with the same finite depth. By Charatonik’s construction in [3] there is a compactification
v:T\{q1,92, - ,qn} = Y(T\{q1,42, - - ,qn}) such that

(1) X = cly(T\{91,92, - ,gn}) is a A-dendroid;

(2) The remainder X\(T\v{q1, 492, - ,¢n}) consists of n components Q1,dz,- -, Qn.

(3) For each i € {1,2,--,n}, the continuum Q; is a terminal subcontinuum of X.
And if f : X — X is a surjection, then f(Ul, Qi) = .-, Q:. Furthermore, for each Q; there
is exactly one Q; such that f(Q;) = Q;. Let H = X\U_, Q;, then f(H)=H. Letp: X » T
be the natural projection, that is, a map such that p(Q;) = {q:} for ¢« € {1,2,---,n} and
piw=7""':H - T\{q:1,92, - ,gn} is a one-to-one map, then pii is 2 homeomorphism. Define
g:T — T as follows. Foreachi € {1,2,---,n}, let g{g;) = p(f(p~2(g:))), and g(t) = p(F(p~1(t)))
for each t € T\{q1,¢2," - ,qn}, then g is well defined and po f = gop. The detail properties about
the compactification X are discussed in [3]. In the following X always denotes the \-dendriod
defined as above.

Lemma 7 Let f : X — X be a surjection. Then x € CR(f) is equivalent to p(z) € CR(g)
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for each z € H.

Proof Let d and p denote the metric on X and T respectively. Suppose z € CR(f). Since
p: X — T is uniformly continuous, for any € > 0, there is some § > 0 such that p(p(z),p(y)) < =
whenever d(z,y) < 8. Let {zp = z,z1,x2, --,2, = 2} be a d-chain from z to z in X, set
yi = p(zi), 0 < i < m, then p(g(yi—1),¥i) = p(g(p(zi-1)), p(zi)) = p(p(f(zi-1)), p(xi)) < e, s0
{yo = p(z),y1,%2, - -, yn = p(x)} is an e-chain from p(z) to p(z) in T, thus p(z) € CR(g).

Suppose p(r) € CR(g). Since pjy : H = T\{q1,92,-"*,qn} is a homeomorphism, for
any € > 0, there is some § > 0 such that if y, 2 € T\{q1,92, - -,9} and p(y,z) < 4, then
d(p~'(y),p(2)) < &. For the above 4, there is a $-chain {yo = p(z),y1,¥2," -, ¥» = p(z)} from
plz) to p(z) in T. If some y; € {q1,92,**,qn}, since g is uniformly continuous, there exists
8 > 0 such that §' < g and if p(y, z) < &, then p(g(y),g(2)) < . Choose ¥ € T\{g1,92," ", gn}
such that p(y;,y) < &', then

p(9(yi-1),¥)) < p(9(¥iz1)> ui) + p(yi, ¥i) < 6,

and

p(g(yi), yir1) < p(g(yi), 9(ui)) + p(9(wi), yir1) < 6.

Replace y; in the above %—cha,in by yl, we can at least get a d-chain from y = p(z) to p(z) in
T\{q1,92, " ,qn}. Let z; = p~1(y;), then clearly {zq = ¢,z1,72, -+, T, = z} is an e-chain from
z to z in X, thus ¢ € CR(f).

Theorem 3 X has the property (*) provided all continua Q; have the property (*).

Proof Let f: X — X and set M(X, f) = ({f/™(X): m € N}. If M(X, f) is contained
in some Q;, then the conclusion follows from the assumption. Otherwise, M (X, f) satisfies all
the assumption on X, so we may assume that f is a surjection.

Let x be an isolated chain recurrent point of f, i.e., there is a neighborhood U of z such
that U N CR(f) = {z}. Consider the following two cases.

Casel € H. Since H is open in X, we may assume that U C H. It follows from Lemma
7 that p(z) € CR(g). p(z) is also an isolated chain recurrent point of g. In fact, since p is a closed
map, for the neighborhood U of z = p~!(p(z)), there exists a neighborhood V of = in X such
that V C U, p(V) is a neighborhood of p(z) in T and V = p~1(p(V)). If p(V) contains a chain
recurrent point y other than p(x), then p~?(y) is also a chain recurrent point of f in V other
than z, a contradiction. It follows from Theorem 1 that p(x) is an eventually periodic point,
i.e., there exists some k € N such that g*(p(z)) € Per(g). Since g*(p(z)) € T\{q1,42,"**,qn}
and g*(p(z)) = p(f*(x)), by [3, Proposition 5.3], f*(x) € Per (f), so z is an eventually periodic
point.

Case2 <z € Q; for some i € {1,2,--,n}. There is some m € N such that f(Q;) = Q..
Since CR(f) = CR(f*) for each k € N!!l, & € CR(f) = CR(f™). For every ¢ > 0, there exists
6 > 0 such that é < £ and if d(z,y) < 4, then d(f™(z), f™(y)) < §. For the above 4, there is a
§-chain {zq = z,z1,22, '+, &n = 2} in X such that d(f™(z;-1), ;) < é. If some z; € H, we can
choose z! € Q; such that d(z;,z;) < 8. Then d(f™(zi—1),2}) < d(f™(zi—1), @) + d(z;, x)) <
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6+ 6 < e, and d(f™(x}), xit1) < d(f™(z}), F™(z)) + d(f™ (i) zip1) < S+ <e.

So we can get at least an e-chain from z to z in @;. Since @Q; has the property (x), there is
k € N such that (f™)*(z) € Per(f™q,) C Per(f™) = Per(f), thus z is an eventually periodic
point.

Corollary ~ Sinl-curve has the property ().
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