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SPACES WITH COMPACT-COUNTABLE

k-SYSTEMS
�

J. LI (Zhangzhou) and S. LIN (Fuzhou)

Abstract. In this paper the relations among k-covers, cs
�-covers and k-

systems are discussed. The following question is partially answered: Does every
separable k

0-space with a point-countable k-system have a countable k-system?

1. Introduction

In 1972, E. Michael established the characterizations of paracompact lo-
cally compact spaces under quintuple quotient mappings (i.e., open mapping,
bi-quotient mapping, countably bi-quotient mapping, pseudo-open mapping
and quotient mapping) (see [1]). In 1982, Y. Tanaka investigated spaces with
a point-countable k-system [2]. In 1992, S. Lin established the relationships
between paracompact locally compact spaces and all kinds of spaces with
k-systems [3]. In this paper, we discuss the relations among k-covers, cs�-
covers and k-systems, and partially answer a problem posed by Y. Tanaka [2].
As applications, we give some characterizations for spaces with a compact-
countable k-system by means of certain maps on paracompact locally com-
pact spaces, and obtain some corresponding results on locally compact metric
spaces.

Let X be a space, and let P be a cover of X. Then P is called a
k-cover of X if every compact K � X is covered by some �nite P 0 � P.
P is a cs�-cover of X if for each sequence fxng converging to x 2 X, some
P 2 P contains the point x and points xn frequently. Recall some basic de�-
nitions. A space X is determined by P if U � X is open (closed) in X if and
only if U \ P is open (closed) in P for every P 2 P. If each element of P is
compact (resp. compact metric) in X, then such a cover is called a k-system
(resp. mk-system) according to A. V. Arhangel'skii (see [4]). A space X is a
k-space (resp. a sequential space), if it is determined by the cover consist-
ing of all (resp. all compact metric) subsets of X. A space X is a k0-space

(resp. Fr�echet space) if, whenever x 2 A, there exists a compact subset C of

X (resp. a sequence fan : n 2 Ng in A) with x 2 A \ C (resp. an ! x).
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A collection P in X is compact-countable (resp. point-countable) if each
compact subset of X (resp. each single point) meets only countable many
members of P.

A map f : X ! Y is called compact-covering (see [5]) (resp. sequence-
covering [6]) if each compact subset (resp. convergent sequence including its
limit point) of Y is an image of a compact subset of X under f . A map
f is a sequentially quotient map [7] (resp. subsequence-covering map [8]) if
for each convergent sequence S of Y , there is a convergent sequence L (resp.
compact subset L) of X such that f(L) is a subsequence of S. A map f is
called a cL-mapping (resp. cs-mapping [9]) if for any compact subset C of Y ,
f�1(C) is a Lindel�of (resp. separable) subspace of X. A map f is quotient if
whenever f�1(U) is open in X, then U is open in Y . A map f is pseudo-open

if whenever f�1(y) � V with V open in X, then y 2 int
�
f(V )

�
.

In this paper, all spaces are regular and T1, and all mappings are contin-
uous and onto.

2. Results

Proposition 2.1. Suppose that P is a point-countable cover of X.
Then P is a k-system if and only if X is a k-space and P is a k-cover
consisting of compact subsets.

Proof. Necessity . Since X has a k-system, X is a k-space. So we must
prove that P is a k-cover of X. Suppose not. For each y 2 K, where K
is compact in X, let (P)

y
=

�
Pi(y) : i 2 N

	
. Inductively choose yn 2 K

such that yn 62 Pi(yj) for i; j < n. Since K is compact in X, then A = fyn :
n 2 Ng has a cluster point x. Let L = A n fxg. Then L is not closed in
X, and so there is P 2 P such that P \ L is not closed in X, and hence P
contains in�nitely many yn's. Let P = Pi(yj) for some i and j, then there
exists n > i; j such that yn 2 Pi(yj), a contradiction to the way that the yn's
were chosen.

Su�ciency . Suppose that there exists F � X such that F \ P is closed
in X for each P 2 P, but F is not closed in X. By the su�cient conditions,
F \C is not closed in X for some compact C � X, and so C � [P 0 for some
�nite P 0 � P. However, F \ C = [

�
(F \ P ) \ C : P 2 P 0

	
is closed in X,

a contradiction. Hence X is determined by P, and P is a k-system for X.
From the proof of Proposition 1.2 in [11], we have:

Proposition 2.2. Let P be a point-countable cs�-cover of X, and let
each compact subset of X be a sequential space. Then P is a k-cover of X.

Proposition 2.3. Suppose X is a Fr�echet space and P is a k-cover of
X, and A � X. If x 2 A, then x 2 P \A for some P 2 P.
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Proof. If x 2 A, the conclusion is clear. So suppose x 62 A. There exists
xn 2 A with xn ! x in X because X is a Fr�echet space. Let K = fxg [ fxn :
n 2 Ng. Then K � [P 0 for some �nite P 0 � P, and some P 2 P 0 must con-
tain in�nitely many xn's, and this P has the required property.

Theorem 2.4. Suppose that X is a separable Fr�echet space, and a space
in which every point is a G�. If X has a point-countable k-cover consisting of
compact subsets of X, then X has a countable k-cover consisting of compact
subsets.

Proof. Let Q be a countable dense subset of X, and let P be a point-
countable k-cover consisting of compact subsets of X. Let R = fR : R 2 P
and R \Q 6= ;g. By Proposition 2.3, R is a countable cover consisting of
compact subsets of X. We will show that R is a k-cover of X. Let K be
a compact subset of X and x 2 K. Put R = fRn : n 2 !g, where x 2 R0.

We claim that there exists n 2 ! such that x 2 intK
� n

[
i=0

Ri

�
. Suppose not.

Since X is a space in which every point is a G� , K is a �rst-countable sub-
space. So we can choose xn 2 K n [

i5n
Ri such that xn ! x. Because each Rn

is compact and closed in X, we can also choose qn;k 2 Q n [
i5n

Ri such that

qn;k ! xn as k !1. But then x is in the closure of these qn;k's, so there ex-
ists a sequence qnj ;kj

! x as j !1. Since xn 6= x and qn;k 6= x for all n and

k (because x 2 R0), we have nj !1 as j !1. By Proposition 2.3, some
P 2 P contains in�nitely many qnj ;kj

's. Then P 2 R, so P = Rm for some

m 2 !. But qnj;kj
62 Rm when nj = m, a contradiction. Thus R is a k-cover

of X.

Corollary 2.5. Suppose that X is a separable Fr�echet space in which
every point is a G�. If X has a point-countable k-system, then X has a
countable k-system.

Proof. Let P be a point-countable k-system for X. By Proposition 2.1,
P is a k-cover consisting of compact subsets of X. In view of Theorem 2.4,
X has a countable k-cover P 0 consisting of compact subsets. By Proposition
2.1, P 0 is a countable k-system.

Remark. Corollary 2.5 partially answers the following question posed
by Tanaka in [2]: Does every separable k0-space with a point-countable
k-system have a countable k-system?

Theorem 2.6. For a space X, the following are equivalent:
(1) X is a compact-covering and quotient cL-image of a paracompact lo-

cally compact space.
(2) X is a quotient cL-image of a paracompact locally compact space.
(3) X has a compact-countable k-system.

Proof. (1)) (2). Obvious.
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(2)) (3). Suppose f : M ! X is a quotient cL-mapping, where M is a
paracompact locally compact space. Then M has a locally-�nite open cover
B such that for each B 2 B, B is compact in M . Let P =

�
f(B) : B 2 B

	
.

Since f is a cL-mapping, then P is a compact-countable cover consisting of
compact subsets of X. By virtue of Lemma 1.7 in [6], X is determined by P
because f is a quotient mapping. Thus P is a compact-countable k-system.

(3)) (1). Let P be a compact-countable k-system for X. Then X is
a k-space. By Proposition 2.1, P is a k-cover consisting of compact sub-
sets. Put M = �P, and let f : M ! X be the natural map. Then M is
a paracompact locally compact space, and f is a cL-mapping. We shall
show that f is compact-covering. In fact, for any compact subset K of X,
since P is a k-cover of X, there is a �nite P 0 � P such that K � [P 0. Let
L = �fK \ P : P 2 P 0g. Then L is compact in M with f(L) = K, and so f
is compact-covering. Because X is a k-space, f is also a quotient mapping.
This completes the proof of the theorem.

Theorem 2.7. For a space X, we consider the following conditions.
(1) X is a sequentially quotient cL-image of a paracompact locally com-

pact space.
(2) X has a compact-countable cs�-cover consisting of compact subsets

of X.
(3) X is a sequence-covering cL-image of paracompact locally compact

space.
(4) X is a subsequence-covering cL-image of a paracompact locally com-

pact space.
Then (1)() (2)) (3)) (4). If X is also a sequential space, then

(4)) (1).

Proof. (1)) (2). Assume that M is a paracompact locally compact
space, and that f : M ! X is a sequentially quotient cL-mapping. Then
M has a locally-�nite open cover B such that for each B 2 B, B is compact
in M . Let P =

�
f(B) : B 2 B

	
. Since f is a cL-mapping, then P is a

compact-countable cover consisting of compact subsets of X. We shall show
that P is a cs�-cover of X. In fact, for any sequence fxng with xn ! x 2 X,

because f is sequentially-quotient, there are a subsequence
�
xni

	
of fxng

and some sequence fyig with yi 2 f
�1
�
xni

�
such that yi ! y 2 f�1(x) inM .

Thus some B 2 B contains fyig eventually because B is an open cover of M .

Hence f(B) 2 P contains
�
xni

	
eventually. This shows that P is a cs�-cover

of X.
(2)) (1). Suppose that P is a compact-countable cs�-cover consisting

of compact subsets of X. Put M = �P, and let f : M ! X be the natural
map. Then M is a paracompact locally compact space, and f is a cL-map.
We shall show that f is sequentially quotient. In fact, for any sequence fxng
with xn ! x in X, denote S = fxg [ fxn : n 2 Ng. Then there is a �nite
P 0 � P such that S � [P 0. Let L = �fP \ S : P 2 P 0g. Then L is sequen-
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tially compact in M with f(L) = S, and so there is a convergent sequence
L0 such that f(L0) is a subsequence of S. This shows that f is sequentially
quotient.

(2)) (3). From the proof of (2)) (1), we have that L is compact in M
with f(L) = S.

(3)) (4). Trivial.
Suppose thatX is also a sequential space, and f : M ! X is subsequence-

covering. From the proof of Lemma 1.6 in [11], f is sequentially quotient.
Hence
(4)) (1) holds.

By Proposition 2.2, Theorem 2.6 and Theorem 2.7, we have:

Corollary 2.8. The following are equivalent for a sequential space X:
(1) X is a compact-covering and quotient cL-image of a paracompact lo-

cally compact space.
(2) X is a quotient cL-image of a paracompact locally compact space.
(3) X is a sequentially quotient and quotient cL-image of a paracompact

locally compact space.
(4) X is a sequence-covering and quotient cL-image of a paracompact

locally compact space.
(5) X is a subsequence-covering and quotient cL-image of a paracompact

locally compact space.
(6) X has a compact-countable k-system.

Corollary 2.9. The following are equivalent for a space X:
(1) X is a compact-covering and quotient cs-image of a locally compact

metric space.
(2) X is a quotient cs-image of a locally compact metric space.
(3) X is a sequentially quotient and quotient cs-image of a locally compact

metric space.
(4) X is a sequence-covering and quotient cs-image of a locally compact

metric space.
(5) X is a subsequence-covering and quotient cs-image of a locally com-

pact metric space.
(6) X has a compact-countable mk-system.

By Corollary 2.9, and Theorem 13 in [12], we have:

Corollary 10. The following are equivalent for a space X:
(1) X is a pseudo-open cL-image of a paracompact locally compact space.
(2) X is a k0-space with a compact-countable k-system.

Corollary 11. The following are equivalent for a space X:
(1) X is a pseudo-open cs-image of a locally compact metric space.
(2) X is a Fr�echet space with a compact-countable mk-system.
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