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Abstract

Let f :X→ Y be a map.f is a sequence-covering map if whenever{yn} is a convergent sequence
in Y , there is a convergent sequence{xn} in X with eachxn ∈ f−1(yn). f is a 1-sequence-covering
map if for eachy ∈ Y , there isx ∈ f−1(y) such that whenever{yn} is a sequence converging toy in
Y there is a sequence{xn} converging tox inX with eachxn ∈ f−1(yn). In this paper we investigate
the structure of sequence-covering images of metric spaces, the main results are that

(1) every sequence-covering, quotient and s-image of a locally separable metric space is a local
ℵ0-space;

(2) every sequence-covering and compact map of a metric space is a 1-sequence-covering map.
 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

“Mappings and spaces” is one of the questions in general topology [1]. Spaces with
certain k-networks play an important role in the theory of generalized metric spaces [7,8].
In the past the relations among spaces with certain k-networks were established by means
of maps [1,11], in which quotient maps, closed maps, open maps and compact-covering
maps were powerful tool. In recent years, sequence-covering maps introduced by Siwiec
in [25] cause attention once again [12,14,16,17,19,30,31,33,36]. Partly, that is because
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sequence-covering maps are closely related to the question about compact-covering and s-
images of metric spaces [22,23], certain quotient images of metric spaces [29,30], and they
are a suitable map associated metric spaces with spaces having certain cs-networks [14,
27]. The present paper contributes to the problem of characterizing the certain quotient
images or sequence-covering images of metric spaces, which is inspired by the following
questions.

Question 1.1 [33]. What is a nice characterization for a quotient and s-image of a locally
separable metric space?

Question 1.2 [32]. For a sequential spaceX with a point-regular cs-network, characterize
X by means of a nice image of a metric space.

Those questions are motivated by the following assertions:
(1) A space is a quotient and s-image of a metric space if and only if it is a sequential

space with a point-countable cs*-network [29];
(2) A space is an open and compact image of a metric space if and only if it has a

point-regular base [1].
First, recall some basic definitions. All spaces are considered to be regular and T1, and all
maps continuous and onto.

Definition 1.3. Let f :X→ Y be a map.
(1) f is ans-mapif eachf−1(y) is separable.
(2) f is acompact mapif eachf−1(y) is compact.
(3) f is acompact-covering map[21] if each compact subset ofY is the image of some

compact subset ofX.
(4) f is asequence-covering map[25] if each convergent sequence ofY is the image of

some convergent sequence ofX.
(5) f is asequentially quotient map[2] if for each convergent sequenceL of Y , there

is a convergent sequenceS of X such thatf (S) is a subsequence ofL.

Definition 1.4. LetX be a space, and letP be a cover ofX.
(1) P is a networkif wheneverx ∈ U with U open inX, thenx ∈ P ⊂ U for some

P ∈ P .
(2) P is ak-network[24] if wheneverK ⊂ U with K compact andU open inX, then

K ⊂⋃P ′ ⊂U for some finiteP ′ ⊂P .
(3) P is acs-network[10] if whenever{xn} is a sequence converging to a pointx ∈ U

with U open inX, then{x} ∪ {xn: n > m} ⊂ P ⊂ U for somem ∈ N and some
P ∈ P .

(4) P is acs*-network[6] if whenever{xn} is a sequence converging to a pointx ∈ U
with U open inX, then{x} ∪ {xni : i ∈N} ⊂ P ⊂U for some subsequence{xni } of
{xn} and someP ∈P .
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A space is acosmic space[21] if it has a countable network. A space is anℵ0-space[21]
if it has a countable k-network, and it is equivalent to a space with a countable cs-network
or a countable cs*-network.

Definition 1.5 [5]. Let X be a space.
(1) Let x ∈ P ⊂ X. P is a sequential neighborhoodof x in X if whenever{xn} is a

sequence converging to the pointx, then{xn: n>m} ⊂ P for somem ∈N.
(2) LetP ⊂X. P is asequentially open subsetin X if P is a sequential neighborhood

of x in X for eachx ∈ P .
(3) X is asequential spaceif each sequentially open subset inX is open.

We recall that a coverP is point-countableif {P ∈ P : x ∈ P } is countable for each
x ∈ X, P is star-countableif {Q ∈ P : Q ∩ P 6= ∅} is countable for eachP ∈ P , P is
locally countableif for eachx ∈X, there is an open neighborhoodV of x in X such that
{P ∈ P : P ∩ V 6= ∅} is countable. A spaceX is metalindelöfif each open cover ofX has
a point-countable open refinement.

2. Sequential separability

Definition 2.1 [28,37]. A spaceX is sequentially separableif X has a countable subset
D such that for eachx ∈ X, there is a sequence{xn} in D with xn→ x. D is called a
sequentially dense subset ofX.

Liu and Tanaka [18] showed that every cosmic space with a point-countable cs-network
is anℵ0-space, in which key step is that every cosmic space is sequentially separable.
Michael [21] proved that a spaceX is a cosmic space if and only if it is an image of a
separable metric space. We shall show that every sequentially separable space has a similar
result. Recall some basic definitions. A spaceX is Fréchet[5], if wheneverx ∈ cl(A)⊂X,
there is a sequence inA converging to the pointx. A spaceX is developable[4] if X has a
development, i.e., there is a sequence{Un} of open covers ofX such that{st(x,Un): n ∈N}
is a local base ofx for eachx ∈X. It is clear that

developable spaces⇒ first countable spaces
⇒ Fréchet spaces⇒ sequential spaces.

Lemma 2.2. Sequential separability is preserved by a map.

Lemma 2.3. Every separable and Fréchet space is sequentially separable.

Lemma 2.4. LetX be a sequentially separable space.
(1) If X has a point-countable cs*-network,X is a cosmic space.
(2) If X has a point-countable k-network,X is a cosmic space.
(3) If X has a point-countable cs-network,X is anℵ0-space.
(4) If X has a star-countable k-network,X is anℵ0-space.
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Proof. Let X be a sequentially separable space with a countable and sequentially dense
subsetD. If X has a point-countable cs*-networkP , put

P ′ = {P ∈ P : P ∩D 6= ∅}.
ThenP ′ is countable. For eachx ∈ U with U open inX, there is a sequence{xn} inD with
xn→ x. SinceP is a cs*-network forX, {x}∪{xni : i ∈N} ⊂ P ⊂U for some subsequence
{xni } of {xn} and someP ∈ P , andP ∈P ′. ThusP ′ is a countable network ofX, andX is
a cosmic space. IfX has a point-countable k-networkP , put

P ′ = {cl(P ): P ∈P, P ∩D 6= ∅}.
ThenP ′ is countable. For eachx ∈ U with U open inX, there are an open setV of X
and a sequence{xn} in D such thatxn→ x ∈ V ⊂ cl(V ) ⊂ U . SinceP is a k-network
for X, {xni : i ∈ N} ⊂ P ⊂ V for some subsequence{xni } of {xn} and someP ∈ P , and
cl(P ) ∈ P ′ andx ∈ cl(P ) ⊂ U . ThusP ′ is a countable network ofX, andX is a cosmic
space. (3) has been proved by Liu and Tanaka in [18]. Since a cosmic space with a star-
countable k-network is anℵ0-space [19, Proposition 2], (4) is also true by (2).2
Theorem 2.5. The following are equivalent for a spaceX:

(1) X is a sequentially separable space.
(2) X is an image of a separable and first countable space.
(3) X is an image of a separable and developable space.

Proof. We only need to show that(1)⇒ (3). Let X be a sequentially separable space,
and letD = {dn: n ∈N} be a sequentially dense subset ofX. For eachx ∈X, take a fixed
Sx = {dx,n: n ∈ N} ⊂ D with Sx → x. Suppose that eachdx,n = x if x ∈ D and each
dx,n is distinct if x ∈X \D. Topology ofX is denoted byτ . A new topologyτ ∗ of X is
defined as follows: for eachx ∈ U ⊂X, U is a neighborhood ofx in (X, τ ∗) if and only if
{dx,n: n>m} ⊂U for somem ∈N. Thenτ ∗ is a topology ofX.

(a) τ ∗ is separable, locally compact and T2.
{x} ∪ {dx,n: n >m} is a compact neighborhood ofx in (X, τ ∗) for eachx ∈ X and each
m ∈N.

(b) τ ∗ is developable.
We assume thatX \D is uncountable and

⋃{Sx : x ∈ X \D} = D. For eachn ∈ N, put
Fn = {di : i 6 n},

Un =
{{x} ∪ (Sx \Fn): x ∈X \D} ∪ {{x}: x ∈ Fn}.

ThenUn is an open cover ofX and for eachx ∈X,

st(x,Un)=
{ {X} ∪ (Sx \ Fn), x ∈X \D,

{x}, x ∈ Fn.
{st(x,Un): n ∈N} is a local base ofx in (X, τ ∗). So{Un} is a development in(X, τ ∗), and
(X, τ ∗) is a developable space.

Sinceτ ⊂ τ ∗, the identical map idx : (X, τ ∗)→ (X, τ) is continuous, andX is an image
of a separable and developable space.2
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Corollary 2.6. Every cosmic space is sequentially separable.

Remark 2.7.
(1) A separable and sequential space6⇒ sequentially separable; see Example 9.3 in [9]

or Example 2.8.16 in [11].
(2) A T2, sequential and cosmic space with a point-countable cs*-network6⇒ anℵ0-

space; see Example 4 in [17].
(3) A T2, first countable, separable space with a locally countable k-network6⇒ a space

with a point-countable cs*-network; see Half-Disc Topology in [26].
(4) Every separable and Fréchet space with a point-countable k-network is anℵ0-

space [9].

3. A sequence-covering and s-image of a locally separable metric space

Find a simple internal characterization of a quotient and s-image of a locally separable
metric space is still an unsolved question [15,33]. By Lemma 2.4(3), Tanaka and Xia [33]
showed that a space is a sequence-covering and s-image of a locally separable metric space
if and only if it has a point-countable cs-network consisting of cosmic subspaces. On the
other hand, Velichko [34] posed an interesting question about quotient and s-images of
metric spaces as follows: Find aΦ-property such that a spaceY is a quotient and s-image
of a metric andΦ-space if and only ifY is aΦ-space which is a quotient and s-image
of a metric space. Velichko [34] proved that a spaceY is a pseudo-open and s-image of
a locally separable metric space if and only ifY is a locally separable space which is a
pseudo-open and s-image of a metric space. In this section, we shall show that a localℵ0-
property is a positive answer about Velichko’s question if the quotient map is replaced by
a sequence-covering map.

Definition 3.1. LetX be a space, and letP be a cover forX.
(1) P is ansn-cover(i.e., sequential neighborhood cover) if each element ofP is a

sequential neighborhood of some point inX, and for eachx ∈X, someP ∈ P is a
sequential neighborhood ofx.

(2) P is anso-cover(i.e.,sequentially open cover) if each element ofP is sequentially
open inX.

Lemma 3.2. LetP be a point-countable cs-network of a spaceX which is closed under
finite intersections, and letU be an sn-cover forX. Put

P ′ = {P ∈ P : P ⊂U for someU ∈ U}.
ThenP ′ is still a cs-network forX.

Proof. Let x ∈W with W open inX. If {xn} is a sequence converging to the pointx in X,
put
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Px =
{
P ∈P : x ∈ P ⊂W andP contains all but finitely manyxn

}
= {

Pn: n ∈N
}
.

For eachn ∈ N, take Qn = ⋂
i6n Pi , then Qn ∈ Px . Let Ux ∈ U be a sequential

neighborhood ofx in X. If there isqn ∈Qn \ Ux for eachn ∈ N, suppose thatG is open
in X with x ∈ G, thenPk ⊂ G for somek ∈ N becauseP is a cs-network forX, thus
qn ∈Qn ⊂ Pk ⊂G whenn > k, andqn→ x, a contradiction. HenceQm ⊂ Ux for some
m ∈N, andQm ∈ P ′. Therefore,P ′ is a cs-network forX. 2

The point-countability ofP in Lemma 3.2 is essential. LetX =N∪ {p}, herep ∈ βN \
N. LetP be a base forX, and letU = {{x}: x ∈X}. SinceX has no non-trivial convergent
sequence [4],U is an so-cover ofX. PutP ′ = {P ∈ P : P ⊂ U for someU ∈ U}. Then
P ′ = {{x}: x ∈N} is not a cs-network ofX.

Lemma 3.3.
(1) A space has a countable cs-network if and only if it is a sequence-covering image of

a separable metric space[27].
(2) A space has a point-countable cs-network if and only if it is a sequence-covering

s-image of a metric space[14].

Theorem 3.4. The following are equivalent for a spaceX:
(1) X is a sequence-covering and s-image of a locally separable metric space.
(2) X has a point-countable cs-network consisting of cosmic subspaces.
(3) X has a point-countable cs-network, and an so-cover consisting ofℵ0-subspaces.

Proof. (1)⇒ (2) Let f :M→X be a sequence-covering and s-map, hereM is a locally
separable metric space. SupposeB is aσ -locally finite base forM consisting of separable
subspaces. PutP = {f (B): B ∈ B}. Then P is a point-countable cs-network forX
consisting of cosmic subspaces.
(2)⇒ (3) LetP be a point-countable cs-network ofX consisting of cosmic subspaces.

For eachP ∈ P , let D(P) be a countable and sequentially dense subset ofP . For each
x ∈X, put

P(x,1)= {P ∈P : x ∈ P }, D(x,1)=
⋃{

D(P): P ∈P(x,1)},
and for eachn> 2 inductively define that

P(x,n)= {P ∈P : P ∩D(x,n− 1) 6= ∅},
D(x,n)=

⋃{
D(P): P ∈ P(x,n)}.

Let P(x) =⋃{P(x,n): n ∈ N}, andU(x) =⋃P(x). To complete the proof of (3), it
suffices to show thatU(x) is sequentially open inX andP(x) is a cs-network forU(x).
If {yn} is a sequence inX converging to a pointy ∈ U(x) ∩W with W open inX, then
y ∈ P for somem ∈ N and someP ∈ P(x,m), and there is a sequence{zn} in D(P)
with zn→ y, thus{y} ∪ {yn, zn: n>m} ⊂Q⊂W for somem ∈ N and someQ ∈ P , so
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Q ∈ P(x,m+1)⊂P(x) and{y} ∪ {yn: n>m} ⊂Q⊂ U(x)∩W . This implies thatU(x)
is sequentially open andP(x) is a cs-network forU(x).
(3)⇒ (1) By Lemma 3.2,X has a point-countable cs-networkP consisting ofℵ0-

subspaces. LetP = {Pα: α ∈ Λ}. For eachα ∈ Λ, in view of Lemma 3.3, there are a
separable metric spaceMα and a sequence-covering mapfα :Mα→ Pα . Put

M =
⊕
α∈Λ

Mα, Z =
⊕
α∈Λ

Pα and f =
⊕
α∈Λ

fα :M→Z.

ThenM is a locally separable metric space andf is a sequence-covering map. Define
h :Z→X a natural map, and letg = h ◦ f :M→X. Theng is a sequence-covering and
s-map. 2
(1)⇔ (2) in Theorem 3.4 is proved in [33]. A role about (3) is that a decomposition

of the sequence-covering, quotient and s-image of a locally separable metric space can be
given by it. It is also closely related to another question posed in [15]: Is every quotient
and s-image of a locally separable metric space equivalent to a quotient and s-image of a
metric space and its each first countable subspace is locally separable?

Recall some basic definitions. Letf :X → Y be a map.f is quotient if whenever
f−1(U) is open inX, thenU is open inY . f is pseudo-openif wheneverf−1(y) ⊂ V
with V open inX, theny ∈ int(f (V )). It is showed thatf is a sequentially quotient if and
only if wheneverf−1(U) in sequentially open inX, thenU is sequentially open inY [2].

Lemma 3.5 [2,5]. Letf :X→ Y be a map.
(1) If X is sequential, thenf is quotient if and only ifY is sequential andf is

sequentially quotient.
(2) If X is Fréchet, thenf is pseudo-open if and only ifY is Fréchet andf is

sequentially quotient.

Corollary 3.6. The following are equivalent for a space X:
(1) X is a sequence-covering, quotient and s-image of a locally separable metric space.
(2) X is a localℵ0-space and a sequence-covering, quotient and s-image of a metric

space.
(3) X is a sequential and localℵ0-space with a point-countable cs-network.

Now, we further investigate the condition in which “so-cover” in Theorem 3.4 is point-
countable.

Theorem 3.7. The following are equivalent for a spaceX:
(1) X has a star-countable cs*-network(cs-network).
(2) X has a point-countable so-cover consisting ofℵ0-subspaces.
(3) X has a disjoint so-cover consisting ofℵ0-subspaces.

Proof. (1)⇒ (3) Let P be a star-countable cs*-network forX. By Lemma 3.10 in [3],
P =⋃{Pα : α ∈Λ}, here eachPα is countable and(

⋃
Pα) ∩ (⋃Pβ) 6= ∅ if and only if
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α 6= β . For eachα ∈Λ, letXα =⋃Pα , andRα = {⋃P ′: P ′ is a finite subfamily ofPα}.
ThenXα is sequentially open andRα is a countable cs-network forXα . Indeed, if a
sequence{xn} in X converges to a pointx ∈ Xα ∩ U with U open inX, let R = {P ∈
P : x ∈ P ⊂ U} = {Pi : i ∈N}, then{xn: n>m} ⊂⋃i6k Pi for somem,k ∈N becauseP
is a cs*-network forX, thus

⋃
i6k Pi ∈Rα , and

⋃
i6k Pi ⊂Xα ∩U . Hence,{Xα : α ∈Λ}

is a disjoint so-cover consisting ofℵ0-subspaces.
(3)⇒ (2) Obviously.
(2)⇒ (1) Let P be a point-countable so-cover forX consisting ofℵ0-subspaces. Put

P = {Pα : α ∈ Λ}. For eachβ ∈ Λ, a countable and sequentially dense subset ofPβ is
denoted byDβ . SincePα is sequentially open for eachα ∈Λ, Dβ ∩ Pα 6= ∅ if and only if
Pβ ∩Pα 6= ∅. Thus{Pα ∈ P : Pβ ∩Pα 6= ∅} is countable. It follows thatP is star-countable.
SupposePα is a countable cs-network ofPα for eachα ∈Λ, then it is easy to show that⋃{Pα: α ∈Λ} is a star-countable cs-network ofX. 2
Corollary 3.8. The following are equivalent for a sequential spaceX:

(1) X has a star-countable cs*-network(cs-network).
(2) X has a point-countable open cover consisting ofℵ0-subspaces.
(3) X is a topological sum ofℵ0-subspaces.
(4) X is a metalindelöf and a localℵ0-space.

Corollary 3.9 [11,34]. The following are equivalent for a Fréchet spaceX:
(1) X is a quotient and s-image of a locally separable metric space.
(2) X is a locally separable space and a quotient and s-image of a metric space.
(3) X has a locally countable cs*-network(k-network, cs-network).

Proof. (1)⇒ (2)Observe that local separability is preserved by a pseudo-open and s-map.
By Lemma 3.5,X is locally separable.
(2)⇒ (3) X is a localℵ0-space by Remark 2.7(4), andX is a metalindelöf space by

Proposition 8.6 in [9]. By(3)⇔ (4) in Corollary 3.8,X has a locally countable cs-network.
(3)⇒ (1) X is a localℵ0-space and a metalindelöf space by Proposition 8.6 in [9]. By

Corollaries 3.8 and 3.6,X is a quotient and s-image of a locally separable metric space.2
Remark 3.10.

(1) By a similar method in the proof of(1)⇒ (3) in Theorem 3.7, it can be proved that
spaces with a locally countable cs*-network are equivalent to spaces with a locally
countable k-network, and spaces with a locally countable cs-network.

(2) A space with a star-countable cs-network6⇒ a space with a star-countable k-
network; see ExampleβN.

(3) A quotient and s-image of a locally separable metric space, which has a star-
countable k-network6⇒ locally separable; see Example 9.8 in [9] or Example 2.9.27
in [11].

(4) A sequential space with a point-countable cs-network consisting of cosmic subspace
6⇒ a space with a point-countable so-cover consisting of cosmic subspace; see
Example 9.3 in [9] or Example 2.8.16 in [11].
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(5) The condition “ℵ0-subspaces” in Theorem 3.7 cannot be replaced by “cosmic
subspaces” because a cosmic space6⇒ a space with a point-countable cs-network;
see Example 1.8.3 in [11] or the “butterfly space” in [20].

Question 3.11.Is a separable and sequence-covering, quotient and s-image of a metric
space a localℵ0-space?

4. A sequence-covering and compact image of a metric space

Definition 4.1 [12]. Let f :X→ Y be a map.f is a 1-sequence-covering mapif for each
y ∈ Y , there isx ∈ f−1(y) such that whenever{yn} is a sequence converging toy in Y
there is a sequence{xn} converging tox in X with eachxn ∈ f−1(yn).

Every open map of a first countable space is 1-sequence-covering [12].

Definition 4.2. LetP =⋃{Px : x ∈X} be a cover of a spaceX such that for eachx ∈X,
(1) Px is anetwork ofx in X, i.e.,x ∈⋂Px and forx ∈ U with U open inX, P ⊂ U

for someP ∈ Px .
(2) If U,V ∈ Px ,W ⊂U ∩ V for someW ∈ Px .

P is aweak base[1] for X if wheneverG⊂X satisfying for eachx ∈G there isP ∈ Px
with P ⊂ G, thenG is open inX. P is ansn-network[12,13] forX if each element of
Px is a sequential neighborhood ofx in X for eachx ∈X, herePx is ansn-network ofx
in X.

For a space, weak base⇒ sn-network⇒ cs-network. An sn-network for a sequential
space is a weak base [12,13]. The purpose introduced 1-sequence-covering maps is to
obtain a characterization of a space with a point-countable weak base.

Lemma 4.3 [12].
(1) A space is a1-sequence-covering and s-image of a metric space if and only if it has

a point-countable sn-network.
(2) A space is a1-sequence-covering, quotient and s-image of a metric space if and

only if it has a point-countable weak base.

By Lemmas 3.3 and 4.3, the sequential fanSω is a sequence-covering and s-image of a
metric space, and cannot be a 1-sequence-covering and s-image of a metric space. As an
answer for Question 1.2, in [16] we showed that for a spaceX, the following conditions
are equivalent:

(1) X is a sequence-covering, quotient and compact image of a metric space.
(2) X is a 1-sequence-covering, quotient and compact image of a metric space.
(3) X is a sequential space with a point-regular cs-network.
(4) X has a point-regular weak base.
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Here a familyP of a spaceX is a point-regular cover [4] if for eachx ∈ U with U open in
X, {P ∈ P : x ∈ P 6⊂ U} is finite. In this section, a further result about sequence-covering
and compact maps of metric spaces is proved as follows.

Theorem 4.4. Let f :X→ Y be a sequence-covering and compact map. IfX is a metric
space,f is a 1-sequence-covering map.

Proof. SinceX is a metric space, there is a locally finite sequence{Bn} of open covers of
X satisfying [4,11]:

(a) eachBn+1 is a star refinement ofBn, i.e., for eachB ∈ Bn+1, there isC ∈ Bn such
that st(B,Bn+1)⊂ C.

(b) {Bn} is a development forX.
For eachn ∈N, putPn = {f (B): B ∈ Bn}, then

(c) For eachz ∈ Y , there isPz ∈Pn such thatPz is a sequential neighborhood ofz in Y .
Sincef is compact,Pn is a point-finite cover ofY . Put(Pn)z = {Pn: i 6 k}. For eachi 6 k,
if Pn is not a sequential neighborhood ofz in Y , there is a sequence{zin}n converging to
z in Y with anyzin /∈ Pn. Definezm = zin with m= (n− 1)k + i andi 6 k, thenzm→ z.
There is a sequence{xm} converging to some pointx ∈ f−1(z) with eachxm ∈ f−1(zm)

becausef is sequence-covering. TakeB ∈ (Bn)x , thenxm ∈ B whenm > m0 for some
m0 ∈N, andPi = f (B) for somei 6 k, thuszin ∈ Pi whenn>m0, a contradiction.

For eachy0 ∈ Y , put

Un =
{
x ∈X: f (B) is not a sequential neighborhood ofy0 in Y

for eachB ∈ (Bn)x
}
.

Then
(d) If x ∈Un,⋂(Bn+1)x ⊂Un+1.

If not, choose a pointp ∈⋂(Bn+1) \ Un+1, thenf (B) is a sequential neighborhood of
y0 in Y for someB ∈ (Bn+1)p by the definition ofUn+1. Take someB1 ∈ (Bn+1)x , then
p ∈ B ∩ B1, thusB ∪ B1 ⊂ B2 for someB2 ∈ Bn by (a), soB2 ∈ (Bn)x andf (B2) is a
sequential neighborhood ofy0 in Y , hencex /∈Un, a contradiction.

(e) f−1(y0) 6⊂⋃{Un: n ∈N}.
If not, f−1(y0)⊂⋃{Un: n ∈N}. By (d), for eachn ∈N,

Un ⊂
⋃{⋂

(Bn+1)x : x ∈ Un
}
⊂Un+1.

Sincef−1(y0) is compact and
⋂
(Bn+1)x is open inX, f−1(y0) ⊂ Um for somem ∈ N.

By (c), there isB ∈ Bm such thatf (B) is a sequential neighborhood ofy0 in Y , then
∅ 6= f−1(y0)∩B ⊂X \Um, a contradiction.

Now, fix a pointx0 ∈ f−1(y0) \⋃{Un: n ∈N}, then
(f) If yi→ y0 in Y , there isxi ∈ f−1(yi) for eachi ∈N with xi→ x0 in X.

For eachn ∈N, there isBn ∈ (Bn)x0 such thatf (Bn) is a sequential neighborhood ofy0 in
Y by x0 /∈ Un, thenyi ∈ f (Bn) wheni > i(n) for somei(n) ∈N, thusBn ∩ f−1(yi) 6= ∅.
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We can assume that 1< i(n) < i(n+ 1). For eachj ∈N, choose

xj ∈
{
f−1(yj ), j < i(1),

f−1(yj ) ∩Bn, i(n)6 j < i(n+ 1), n ∈N.

Thenxj ∈ f−1(yj ), andxj → x0 in X by (b).
In a word,f is a 1-sequence-covering map.2
Finally, we discuss some relations among the sequence-covering and compact images

of separable metric spaces. LetP be a cover of a spaceX. P has aCFP-property
(i.e., compact finite partition property) [35] if wheneverK is compact inX, there are
a finite collection{Kn: n 6 k} of closed subsets ofK and {Pn: n 6 k} ⊂ P such that
K =⋃{Kn: n6 k} and eachKn ⊂ Pn. The following lemma is due to [35].

Lemma 4.5. A spaceX is a compact-covering and compact image of a(separable) metric
space if and only if there is a sequenceUn of (countable and) point-finite covers ofX such
that

(1) eachUn is CFP,
(2) {st(x,Un): n ∈N} is a network ofx in X for eachx ∈X.

Theorem 4.6. The following are equivalent for a spaceX:
(1) X is a sequentially quotient and compact image of a separable metric space.
(2) X is a compact-covering and compact image of a separable metric space.
(3) X has a countable sn-network.

Proof. (2)⇒ (1) Obviously.
(1)⇒ (3) Let f :M → X be a sequentially quotient and compact map, hereM is a

separable metric space. There is a countable and locally finite sequence{Bn} of open covers
ofM such that [4,11]

(a) eachBn+1 is a refinement ofBn,
(b) {st(K,Bn): n ∈N} is a local base ofK in X for each compactK in X.

For eachn ∈ N, putPn = {f (B): B ∈ Bn}. ThenPn is a countable and point-finite cover
of X. Let

H= {st(x,Pn): x ∈X, n ∈N
}
.

ThenH is countable. We shall show thatH is an sn-network forX. For eachx ∈ U with
U open inX, st(f−1(x),Bn) ⊂ f−1(U) for somen ∈ N by (b), then st(x,Pn) ⊂ U .
If st(x,Pm) is not a sequential neighborhood ofx in X for somem ∈ N, there is a
sequence{xn} converging to the pointx in X with any xn /∈ st(x,Pm), then there are a
subsequence{xni } of {xn} andαi ∈ f−1(xni ) for eachi ∈ N such thatαi → α ∈ f−1(x)

inM. TakeB ∈ (Bm)α , thusαi ∈B wheni > j for somej ∈N, soxn ∈ f (B)⊂ st(x,Pm),
a contradiction. Consequently,H is a countable sn-network forX.
(3)⇒ (2) LetP be a countable sn-network forX. We can assume that each element of
P is closed inX. Denote that

P = {Pn: n ∈N} =
⋃
{Px : x ∈X},



312 S. Lin, P. Yan / Topology and its Applications 109 (2001) 301–314

here eachPx is an sn-network ofx in X. For eachn ∈N, put

Qn =
{
x ∈X: Pn /∈Px

}
,

Un = {Pn,Qn}.
ThenUn is a cover ofX, and for eachx ∈X,

st(x,Un)=


Pn, Pn ∈℘x,
X, Pn /∈℘x, x ∈ Pn,
Qn, Pn /∈℘x, x /∈ Pn.

Thus{st(x,Un): n ∈N} is a network ofx in X. SupposeC is compact inX, put

C1= Pn ∩C, C2= C \ Pn.
ThenC = C1∪C2. If x ∈ C2, there is a sequence{xi} in C \Pn with xi→ x in C because
C is metrizable in view of [7, Theorem 2.13], thenPn /∈ Px , andx ∈Qn. ThusC2 ⊂Qn
andC1 ⊂ Pn. HenceX is a compact-covering and compact image of a separable metric
space by Lemma 4.5.2

A space has a countable weak base if and only if it is a sequential space with a countable
sn-network [12].

Corollary 4.7. The following are equivalent for a spaceX:
(1) X is a quotient and compact image of a separable metric space.
(2) X is a compact-covering, quotient and compact image of a separable metric space.
(3) X has a countable weak base.

We recall that a spaceX is ak-spaceif wheneverA⊂X such thatA ∩K is closed for
each compactK in X, thenA is closed inX. Every sequential space is a k-space.

Corollary 4.8. The following are equivalent for a k-space with a star-countable k-net-
work:

(1) X is a quotient and compact image of a locally separable metric space.
(2) X is a compact-covering, quotient and compact image of a locally separable metric

space.
(3) X is a quotient and compact image of a metric space.
(4) X is a compact-covering, quotient and compact image of a metric space.
(5) X contains no closed copy ofSω.

Proof. It only need to show that(5)⇒ (1). This is as in the proof of Theorems 4 and 5
in [19]. 2
Remark 4.9.

(1) A space with a countable weak base6⇒ a sequence-covering and compact image of
a separable metric space; see Example 2.14(3) in [31].
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(2) A perfect map of a compact metric space6⇒ a sequence-covering map; see [25].
(3) A compact-covering, quotient and compact image of a locally compact metric

space6⇒ a space with a point-countable cs-network; see Example 9.8 in [9] or
Example 2.9.27 in [11].

Question 4.10.Is a Fréchet space with a countable cs-network a closed and sequence-
covering image of a separable metric space?
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